Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Light

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

Hydrogels are highly water-absorbent hydrophilic polymer networks, which show potential in many biocompatible ap- plications. In previous work, we demonstrated the feasibility of using poly(ethylene glycol) dimethacrylate (PEG-DMA) gels polymerized with a photoinitiator for encapsulation and stabilization of painted biomimetic membrane arrays for novel separation technologies or biosensor applications. These gels were formed from PEG-DMA monomers suspended in phosphate buffered saline (PBS) solution and gelated by radical polymerization in the presence of the photoinitiator Darocur 1173. In this work, we show that the properties of a PEG-DMA hydrogel formed by photoinitiated polymerize- tion can be tailored by varying the photocrosslinking time. Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (RS) showed that the optimal crosslinking time for the gel was 6 - 10 minutes and that the water content of the gels could be tuned in the range of 50 - 90 wt%. The resistivity was between 0.8 - 3.5 Ωm, which is comparable to that of PBS. The low resistivity of the gel makes it compatible for encapsulating membranes for (ion channel based) biosensor applications. With FTIR and RS we identified spectral features of the hydrogel, which may serve as a diag- nostic tool to monitor changes in the gels due to variation in parameters such as time, pH, temperature, aging or expo- sure to chemicals or biological material.
Original languageEnglish
JournalMaterials Sciences and Applications
Publication date2012
Volume3
Pages425-431
ISSN2153-117X
DOIs
StatePublished
CitationsWeb of Science® Times Cited: No match on DOI

Keywords

  • Hydrogel swelling, UV-induced polymerization, FTIR, Raman spectroscopy, Impedance spectroscopy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 9857409