Systems strategies for developing industrial microbial strains.

Industrial strain development requires system-wide engineering and optimization of cellular metabolism while considering industrially relevant fermentation and recovery processes. It can be conceptualized as several strategies, which may be implemented in an iterative fashion and in different orders. The key challenges have been the time-, cost- and labor-intensive processes of strain development owing to the difficulties in understanding complex interactions among the metabolic, gene regulatory and signaling networks at the cell level, which are collectively represented as overall system performance under industrial fermentation conditions. These challenges can be overcome by taking systems approaches through the use of state-of-the-art tools of systems biology, synthetic biology and evolutionary engineering in the context of industrial bioprocess. Major systems metabolic engineering achievements in recent years include microbial production of amino acids (L-valine, L-threonine, L-lysine and L-arginine), bulk chemicals (1,4-butanediol, 1,4-diaminobutane, 1,5-diaminopentane, 1,3-propanediol, butanol, isobutanol and succinic acid) and drugs (artemisinin).

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, New Bioactive Compounds
Contributors: Lee, S. Y., Kim, H. U.
Number of pages: 12
Pages: 1061-1072
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Nature Biotechnology
Volume: 33
Issue number: 10
ISSN (Print): 1087-0156
Ratings:
BFI (2019): BFI-level 3
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 3
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 12.94 SJR 18.252 SNIP 6.062
Web of Science (2017): Impact factor 35.724
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.16 SJR 20.666 SNIP 6.42
Web of Science (2016): Impact factor 41.667
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 11.88 SJR 18.263 SNIP 5.553
Web of Science (2015): Impact factor 43.113
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 11.4 SJR 16.609 SNIP 5.37
Web of Science (2014): Impact factor 41.514
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 10.45 SJR 13.974 SNIP 5.364
Web of Science (2013): Impact factor 39.08
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.44 SJR 10.87 SNIP 4.914
Web of Science (2012): Impact factor 32.438
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes