System-level perturbations of cell metabolism using CRISPR/Cas9 - DTU Orbit (08/12/2018)

System-level perturbations of cell metabolism using CRISPR/Cas9

CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Synthetic Biology Tools for Yeast
Contributors: Jakociunas, T., Jensen, M. K., Keasling, J.
Pages: 134-140
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Current Opinion in Biotechnology
Volume: 46
ISSN (Print): 0958-1669
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.45 SJR 3.202 SNIP 2.205
Web of Science (2017): Impact factor 8.38
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.55 SJR 3.367 SNIP 2.115
Web of Science (2016): Impact factor 9.294
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.99 SJR 3.113 SNIP 2.137
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.45 SJR 3.292 SNIP 2.085
Web of Science (2014): Impact factor 7.117
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.93 SJR 3.378 SNIP 2.216
Web of Science (2013): Impact factor 8.035
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 7.93 SJR 3.521 SNIP 2.313
Web of Science (2012): Impact factor 7.86
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 7.76 SJR 3.336 SNIP 2.077
Web of Science (2011): Impact factor 7.711
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2