We report the results of our recent investigations into the reactivity of cyclic solid-supported N-acyliminium ions. An intermolecular Mannich-type transformation of these intermediates was used to generate libraries of substituted lactams. Masked aldehyde building blocks were readily prepared and coupled to peptides immobilized on PEGA800 (polyethylene glycol dimethyl acrylamide) resin through an HMBA [4-(hydroxymethyl)benzoic acid] linker. When treated with acid, the aldehyde was cleanly released and condensed with the amide backbone to form a hydroxylactam/N-acyliminium ion, which underwent intermolecular reactions with a series of nucleophilic heterocycles, such as substituted indoles, thiophenes, furans, and electron-rich benzenes. The resulting lactams were formed within a few minutes and in high purities (typically >85%).

General information

State: Published
Organisations: Department of Chemistry, Organic Chemistry, University of Copenhagen, Nanyang Technological University
Contributors: Komnatnyy, V. V., Taveras, K. M., Nandurkar, N. S., Le Quement, S. T., Givskov, M. C., Nielsen, T. E.
Number of pages: 7
Pages: 3524-3530
Publication date: 2015
Peer-reviewed: Yes

Publication information

Volume: 2015
Issue number: 16
ISSN (Print): 1434-193X

Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.65 SJR 1.037 SNIP 0.643
Web of Science (2017): Impact factor 2.882
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.74 SJR 1.177 SNIP 0.679
Web of Science (2016): Impact factor 2.834
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.88 SJR 1.225 SNIP 0.776
Web of Science (2015): Impact factor 3.068
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.96 SJR 1.23 SNIP 0.799
Web of Science (2014): Impact factor 3.065
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.96 SJR 1.336 SNIP 0.827
Web of Science (2013): Impact factor 3.154
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.93 SJR 1.54 SNIP 0.852
Web of Science (2012): Impact factor 3.344
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.2 SJR 1.576 SNIP 0.868
Web of Science (2011): Impact factor 3.329
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.615 SNIP 0.812
Web of Science (2010): Impact factor 3.206
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.562 SNIP 0.823
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.744 SNIP 0.811
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.824 SNIP 0.889
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.601 SNIP 0.881
Scopus rating (2005): SJR 1.332 SNIP 0.796
Scopus rating (2004): SJR 1.25 SNIP 0.849
Scopus rating (2003): SJR 1.28 SNIP 0.837
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.56 SNIP 0.868
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.233 SNIP 0.868
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.405 SNIP 1.193
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.9 SNIP 1.08
Original language: English
Keywords: Solid-phase synthesis, Nitrogen heterocycles, Lactams, N-Acyliminium ions, Aromatic substitution
DOIs: 10.1002/ezoc.201500054
Source: FindIt
Source-ID: 275028856
Research output: Research - peer-review Journal article – Annual report year: 2015