Synthesis of Biochemical Applications on Flow-Based Microfluidic Biochips using Constraint Programming

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2012

View graph of relations

Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. We propose a constraint programming (CP) based approach for the synthesis of biochemical applications on flow-based microfluidic biochips. We use a sequencing graph to model the biochemical application and consider that the biochip architecture is given. We model the architecture using a topology graph. We are interested in synthesizing an implementation, consisting of binding and scheduling of the biochemical operations onto the components of the architecture, such that the resource and dependency constraints are satisfied and the application completion time is minimized. Our CP framework generates optimal implementations and has been evaluated using synthetic as well as real-life case studies.
Original languageEnglish
Title of host publication2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)
Publication date2012
ISBN (print)978-1-4673-0785-7
StatePublished - 2012
Event2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) - Cannes Côte d'Azur, France


Conference2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)
CityCannes Côte d'Azur
Internet address


  • CAD, Microfluidics, Biochips, Synthesis, Performance
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 10033878