A new kind of phase change humidity control material (PCHCM) was prepared by using PCM microcapsules and different hygroscopic porous materials. The PCHCM composite can regulate the indoor hygrothermal environment by absorbing or releasing both heat and moisture. The PCM microcapsules were synthesized with methyl triethoxysilane by the sol–gel method. The vesuvianite, sepiolite and zeolite were used as hygroscopic materials. The scanning electron microscopy (SEM) was used to measure the morphology profiles of the microcapsules and PCHCM. The differential scanning calorimetry (DSC) and the thermal gravimetric analysis (TGA) were used to determine the thermal properties and thermal stability. Both the moisture transfer coefficient and moisture buffer value (MBV) of different PCHCMs were measured by the improved cup method. The DSC results showed that the SiO2 shell can reduce the super-cooling degree of PCM. The super-cooling degrees of microcapsules and PCHCM are lower than that of the pure PCM. The onset temperature of thermal degradation of the microcapsules and PCHCMs is higher than that of pure PCM. Both the moisture transfer coefficient and MBV of PCHCMs are higher than that of the pure hygroscopic materials. The results indicated the PCHCMs have better thermal properties and moisture buffer ability.