Sustainable transition of electronic products through waste policy - DTU Orbit (14/01/2019)

Sustainable transition of electronic products through waste policy

The European Union's Waste Electrical and Electronic Equipment (WEEE) directive makes a challenging case for transition theory and its different aspects, as it represents an ongoing and still open-ended case. At present the objectives of the directive are not met: the amount of electronic waste is increasing, and the resulting waste is poorly managed. With its starting point in the multi-level perspective of transition theory, this case study analyzes how the outcome of the WEEE directive is constituted in the interplay between the somewhat detached regimes of electronics and waste management. The two regimes are described and analyzed together with the underlying regulatory principle of extended producer responsibility, which has guided the design of the directive. Conflicting interpretations of sustainability, in combination with a simplistic understanding and agency introduced from the top-down, has eliminated waste minimization as the main outcome of the directive. The concluding discussions raise the issues of the role of sustainable niche initiatives in electronics compared to multi-regime interaction. Guiding visions may need to be supplemented with other alignment devices in order to support co-evolution of regimes and coherent actions within transition processes.

General information
State: Published
Organisations: Innovation and Sustainability, Department of Management Engineering
Contributors: Lauridsen, E. H., Jørgensen, U.
Pages: 486-494
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Research Policy
Volume: 39
Issue number: 4
ISSN (Print): 0048-7333
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Impact factor 4.661
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.62 SJR 3.743 SNIP 3.352
Web of Science (2016): Impact factor 4.495
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.61 SJR 3.542 SNIP 3.238
Web of Science (2015): Impact factor 3.47
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.49 SJR 2.544 SNIP 3.075
Web of Science (2014): Impact factor 3.117
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.74 SJR 2.721 SNIP 3.098
Web of Science (2013): Impact factor 2.598
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.45 SJR 2.746 SNIP 3.052
Web of Science (2012): Impact factor 2.85
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.1 SJR 2.626 SNIP 2.935
Web of Science (2011): Impact factor 2.52
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.204 SNIP 2.553
Web of Science (2010): Impact factor 2.508
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.489 SNIP 2.592
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.756 SNIP 2.634
Scopus rating (2007): SJR 2.465 SNIP 2.49
Scopus rating (2006): SJR 2.62 SNIP 2.542
Scopus rating (2005): SJR 2.447 SNIP 2.781
Scopus rating (2004): SJR 1.987 SNIP 2.765
Scopus rating (2003): SJR 1.674 SNIP 2.797
Scopus rating (2002): SJR 1.673 SNIP 2.398
Scopus rating (2001): SJR 1.73 SNIP 2.19
Scopus rating (2000): SJR 0.979 SNIP 1.993
Scopus rating (1999): SJR 0.902 SNIP 1.559
Original language: English
Keywords: Extended Producer Responsibility, WEEE directive, Sustainable transition, Multiple regimes, Waste
DOIs:
10.1016/j.respol.2010.01.021
Source: orbit
Source-ID: 272139
Research output: Research - peer-review » Journal article – Annual report year: 2010