Survey of anthelmintic resistance on Danish horse farms, using 5 different methods of calculating faecal egg count reduction - DTU Orbit (01/01/2019)

Survey of anthelmintic resistance on Danish horse farms, using 5 different methods of calculating faecal egg count reduction

This study reports on the prevalence of anthelmintic resistance in strongyles of horses in Denmark; Of 5 methods used for the calculation of faecal egg count reduction (FECR) the method recommended by the World Association for the Advancement of Veterinary Parasitology, for the detection of resistance in sheep was the most sensitive procedure for detecting resistance. Using this method benzimidazole resistance was detected on 33 of 42 farms (79%) examined. Pyrantel was tested on 15 farms and FECR tests indicate resistance on 3 (30%) farms. On 2 farms on which resistance to pyrantel was detected resistance to benzimidazoles was also detected. On one of 16 farms examined ivermectin resistance was indicated at Day 14 but not at Day 19. On the 15 remaining farms ivermectin was effective. Due to the high prevalence of anthelmintic resistance in Danish horse herds it is recommended that tests of anthelmintic efficacy be conducted routinely to monitor the effectiveness of the strongyle control programmes.

General information
State: Published
Organisations: National Food Institute, Technical University of Denmark
Contributors: Craven, J., Bjørn, H., Henriksen, S., Nansen, P., Larsen, M., Lendal, S.
Pages: 289-293
Publication date: 1998
Peer-reviewed: Yes

Publication information
Journal: Equine Veterinary Journal
Volume: 30
Issue number: 4
ISSN (Print): 0425-1644
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.72 SJR 0.991 SNIP 1.375
Web of Science (2017): Impact factor 2.022
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.58 SJR 1.092 SNIP 1.216
Web of Science (2016): Impact factor 2.382
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.62 SJR 1.122 SNIP 1.343
Web of Science (2015): Impact factor 2.475
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.68 SJR 1.116 SNIP 1.395
Web of Science (2014): Impact factor 2.374
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.96 SJR 1.375 SNIP 1.509
Web of Science (2013): Impact factor 2.369
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.91 SJR 1.114 SNIP 1.269
Web of Science (2012): Impact factor 2.286
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.34 SJR 0.872 SNIP 0.919
Web of Science (2011): Impact factor 1.456
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2