Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures - DTU Orbit (17/11/2018)

Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal separation. Here we use this approach for the quantitative analysis of a complex homooligomeric glycan mixture.

General information
State: Published
Organisations: Department of Chemistry, Organic Chemistry, Carlsberg Research Center
Contributors: Beeren, S., Meier, S.
Number of pages: 4
Pages: 3073-3076
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Chemical Communications
Volume: 51
ISSN (Print): 1359-7345
Ratings:
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 6.03 SJR 2.555 SNIP 1.127
 Web of Science (2017): Impact factor 6.29
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 6.06 SJR 2.538 SNIP 1.16
 Web of Science (2016): Impact factor 6.319
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 6.7 SJR 2.601 SNIP 1.295
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 6.83 SJR 2.692 SNIP 1.436
 Web of Science (2014): Impact factor 6.834
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 6.73 SJR 2.752 SNIP 1.372
 Web of Science (2013): Impact factor 6.718
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 6.21 SJR 3.118 SNIP 1.35
 Web of Science (2012): Impact factor 6.378
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 2
 Scopus rating (2011): CiteScore 5.96 SJR 2.889 SNIP 1.323
 Web of Science (2011): Impact factor 6.169
 ISI indexed (2011): ISI indexed yes
 Web of Science (2011): Indexed yes
 BFI (2010): BFI-level 2