Subdural to subgaleal EEG signal transmission: The role of distance, leakage and insulating affectors - DTU Orbit (08/12/2018)

Subdural to subgaleal EEG signal transmission: The role of distance, leakage and insulating affectors

Objective
To estimate the area of cortex affecting the extracranial EEG signal. Methods The coherence between intra- and extracranial EEG channels were evaluated on at least 10 min of spontaneous, awake data from seven patients admitted for epilepsy surgery work up.

Results
Cortical electrodes showed significant extracranial coherent signals in an area of approximately 150 cm² although the field of vision was probably only 31 cm² based on spatial averaging of intracranial channels taking into account the influence of the craniotomy and the silastic membrane of intracranial grids. Selecting the best cortical channels, it was possible to increase the coherence values compared to the single intracranial channel with highest coherence. The coherence seemed to increase linearly with an accumulation area up to 31 cm², where 50% of the maximal coherence was obtained accumulating from only 2 cm² (corresponding to one channel), and 75% when accumulating from 16 cm².

Conclusion
The skull is an all frequency spatial averager but dominantly high frequency signal attenuator. Significance An empirical assessment of the actual area of cerebral sources generating the extracranial EEG provides better opportunities for clinical electroencephalographers to determine the location of origin of particular patterns in the EEG.

General information
State: Published
Organisations: Department of Electrical Engineering, Biomedical Engineering, Department of Applied Mathematics and Computer Science, Dynamical Systems, Hypo-Safe A/S, Copenhagen University Hospital, University of Copenhagen
Contributors: Duun-Henriksen, J., Kjaer, T. W., Madsen, R. E., Jespersen, B., Duun-Henriksen, A. K., Remvig, L. S., Thomsen, C. E., Sørensen, H. B. D.
Pages: 1570-1577
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Clinical Neurophysiology
Volume: 124
Issue number: 8
ISSN (Print): 1388-2457
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.98 SJR 1.561 SNIP 1.428
Web of Science (2017): Impact factor 3.614
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.81 SJR 2.456 SNIP 1.783
Web of Science (2016): Impact factor 3.866
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.72 SJR 1.367 SNIP 1.35
Web of Science (2015): Impact factor 3.426
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.61 SJR 0.666 SNIP 0.569
Web of Science (2014): Impact factor 3.097
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3 SJR 0.101 SNIP 1.462
Web of Science (2013): Impact factor 2.979
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes