Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications - DTU Orbit (18/11/2018)

Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications

Laccases (EC 1.10.3.2) are copper-containing oxidoreductases that have a relatively high redox potential which enables them to catalyze oxidation of phenolic compounds, including lignin-derived phenolics. The laccase-catalyzed oxidation of phenolics is accompanied by concomitant reduction of dioxygen to water via copper catalysis and involves a series of electron transfer reactions balanced by a stepwise re-oxidation of copper ions in the active site of the enzyme. The reaction details of the catalytic four-copper mechanism of laccase-mediated catalysis are carefully re-examined and clarified. The substrate range for laccase catalysis can be expanded by means of supplementary mediators that essentially function as vehicles for electron transfer. Comparisons of amino acid sequences and structural traits of selected laccases reveal conservation of the active site trinuclear center geometry but differences in loop conformations. We also evaluate the features and regions of laccases in relation to modification and evolution of laccases for various industrial applications including lignocellulosic biomass processing.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering
Contributors: Sitarz, A. K., Mikkelsen, J. D., Meyer, A. S.
Pages: 70-86
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Critical Reviews in Biotechnology
Volume: 36
Issue number: 1
ISSN (Print): 0738-8551
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.89 SJR 1.243 SNIP 1.427
Web of Science (2017): Impact factor 5.239
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.91 SJR 1.285 SNIP 1.5
Web of Science (2016): Impact factor 6.542
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.89 SJR 1.647 SNIP 1.942
Web of Science (2015): Impact factor 7.51
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.52 SJR 1.819 SNIP 2.304
Web of Science (2014): Impact factor 7.178
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 7.05 SJR 1.899 SNIP 3.01
Web of Science (2013): Impact factor 7.837
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.91 SJR 1.527 SNIP 2.154
Web of Science (2012): Impact factor 5.095
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.62 SJR 1.549 SNIP 2.155
Web of Science (2011): Impact factor 6.472
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.523 SNIP 2.338
Web of Science (2010): Impact factor 5.281
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.472 SNIP 1.846