Stress relaxation of bi-disperse polystyrene melts - DTU Orbit (07/03/2019)

Stress relaxation of bi-disperse polystyrene melts: Exploring the interactions between long and short chains in non-linear rheology

We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily. Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Department of Micro- and Nanotechnology, Amphiphilic Polymers in Biological Sensing, Drexel University
Pages: 303-314
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Rheologica Acta
Volume: 55
Issue number: 4
ISSN (Print): 0035-4511
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.9 SJR 0.704 SNIP 1.063
Web of Science (2017): Impact factor 1.833
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.9 SJR 0.634 SNIP 1.026
Web of Science (2016): Impact factor 1.767
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.09 SJR 0.876 SNIP 1.272
Web of Science (2015): Impact factor 2.184
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.72 SJR 0.725 SNIP 1.181
Web of Science (2014): Impact factor 1.869
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.09 SJR 0.877 SNIP 1.38
Web of Science (2013): Impact factor 1.781
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.8 SJR 0.898 SNIP 1.36
Web of Science (2012): Impact factor 1.626
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.22 SJR 1.292 SNIP 1.397
Web of Science (2011): Impact factor 2.027