Stress relaxation following uniaxial extension of polystyrene melt and oligomer dilutions

The filament stretching rheometer has been used to measure the stress relaxation following the startup of uniaxial extensional flow, on a narrow molar mass distribution (NMMD) polystyrene melt and styrene oligomer dilutions thereof. All samples used here were characterized in molecular weight, mechanical spectroscopy, and constant strain rate uniaxial extension in the work of Huang et al. [Macromolecules 46, 5026–5035 (2013); ACS Macro Lett. 2, 741–744 (2013)]. The stress relaxation following the steady extensional stress was measured on a 285 kg/mole NMMD polystyrene and two 1.92 kg/mole styrene oligomer dilutions thereof (PS-285k, PS-285k/2k-72, and PS-285k/2k-44) in the work of Huang et al. [Macromolecules 46, 5026–5035 (2013)]. The two dilutions contained 28 and 56 wt. % oligomer, respectively. Further, the stress relaxation on a 545 kg/mole NMMD polystyrene diluted with 48 wt. % 0.972 kg/mole styrene oligomer (PS-545k/1k-52) in the work of Huang et al. [ACS Macro Lett. 2, 741–744 (2013)] was measured as well. All the terminal relaxations could be predicted by a Doi and Edwards, e.g., pure configurational, type of model. At smaller time scales, agreement with a molecular stress function type of constitutive representation was observed for all measured relaxations. VC 2016 The Society of Rheology.
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.34 SJR 1.96 SNIP 1.839
Web of Science (2011): Impact factor 2.978
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.831 SNIP 1.495
Web of Science (2010): Impact factor 3.117
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.796 SNIP 1.539
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.86 SNIP 2.468
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.753 SNIP 1.777
Scopus rating (2006): SJR 1.472 SNIP 1.706
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.921 SNIP 1.64
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.72 SNIP 1.812
Scopus rating (2003): SJR 1.865 SNIP 1.762
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.882 SNIP 1.994
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.622 SNIP 1.952
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.729 SNIP 1.794
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.899 SNIP 2.004
Original language: English
Electronic versions:
05_Huang_Journal_of_Rheology_2016.pdf. Embargo ended: 01/04/2017
DOIs:
10.1122/1.4944995
Source: FindIt
Source-ID: 2303229238
Research output: Research - peer-review › Journal article – Annual report year: 2016