Strategies and limits in multi-stage single-point incremental forming - DTU Orbit
(20/02/2019)

Strategies and limits in multi-stage single-point incremental forming

Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups with vertical walls. The strategy consists of forming a conical cup with a taper angle in the first stage, followed by three subsequent stages that progressively move the conical shape towards the desired cylindrical geometry. The investigation includes material characterization, determination of forming-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain paths. The results also reveal that the sequence of multi-stage forming has a large effect on the location of strain points in the principal strain space. Strain paths are linear in the first stage and highly non-linear in the subsequent forming stages. The overall results show that the experimentally determined FFLCs can successfully be employed to establish the forming limits of multi-stage SPIF.

General information

State: Published
Organisations: Manufacturing Engineering, Department of Mechanical Engineering, Technical University of Lisbon
Contributors: Skjødt, M., Silva, M., Martins, P. A. F., Bay, N.
Pages: 33-44
Publication date: 2010
Peer-reviewed: Yes

Publication information

Journal: Journal of Strain Analysis for Engineering Design
Volume: 45
Issue number: 1
ISSN (Print): 0309-3247

Ratings:
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.19 SJR 0.615 SNIP 0.966
- Web of Science (2017): Impact factor 1.32
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.3 SJR 0.577 SNIP 0.965
- Web of Science (2016): Impact factor 1.222
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 1.23 SJR 0.568 SNIP 1.098
- Web of Science (2015): Impact factor 1.25
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 1.21 SJR 0.658 SNIP 1.274
- Web of Science (2014): Impact factor 0.909
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 1.08 SJR 0.7 SNIP 1.242
- Web of Science (2013): Impact factor 1.008
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 1.09 SJR 0.634 SNIP 1.104
- Web of Science (2012): Impact factor 0.881
- ISI indexed (2012): ISI indexed yes
- BFI (2011): BFI-level 1