In this paper, we develop a new framework for strategic planning purposes to calculate railway infrastructure occupation and capacity consumption in networks, independent of a timetable. Furthermore, a model implementing the framework is presented. In this model different train sequences are generated and assessed to obtain timetable independence. A stochastic simulation of delays is used to obtain the capacity consumption. The model is tested on a case network where four different infrastructure scenarios are considered. Both infrastructure occupation and capacity consumption results are obtained efficiently with little input. The case illustrates the model’s ability to quantify the capacity gain from infrastructure scenario to infrastructure scenario which can be used to increase the number of trains or improve the robustness of the system.