Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays: Paper

Within the quest for direct band-gap group IV materials, strain engineering in germanium is one promising route. We present a study of the strain distribution in single, suspended germanium nanowires using nanofocused synchrotron radiation. Evaluating the probed Bragg reflection for different illumination positions along the nanowire length results in corresponding strain components as well as the nanowire's tilting and bending. By using these findings we determined the complete strain state with the help of finite element modelling. The resulting information provides us with the possibility of evaluating the validity of the strain investigations following from Raman scattering experiments which are based on the assumption of purely uniaxial strain.

General information
State: Published
Organisations: Center for Electron Nanoscopy, Johannes Kepler Universität Linz, Eindhoven University of Technology, Vienna University of Technology, European Synchrotron Radiation Facility
Number of pages: 10
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Nanotechnology
Volume: 27
Issue number: 5
Article number: 055705
ISSN (Print): 0957-4484
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.01 SJR 1.079 SNIP 0.788
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.87 SJR 1.339 SNIP 0.945
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.07 SJR 1.257 SNIP 1.035
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.09 SJR 1.497 SNIP 1.269
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.74 SJR 1.602 SNIP 1.231
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.34 SJR 1.861 SNIP 1.307
Web of Science (2012): Indexed yes
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.86 SJR 1.899 SNIP 1.451
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.844 SNIP 1.252
Web of Science (2010): Impact factor 3.652
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.809 SNIP 1.27
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.857 SNIP 1.32
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.899 SNIP 1.348
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.938 SNIP 1.364
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.958 SNIP 1.435
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.892 SNIP 1.47
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.475 SNIP 1.364
Web of Science (2003): Indexed yes
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.93 SNIP 0.929
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.89 SNIP 0.818
Scopus rating (1999): SJR 0.956 SNIP 0.9

Original language: English
Keywords: Nanofocused XRD, Germanium, Single nanowire, μ-Raman, Strain distribution, Finit element method
Electronic versions:

dpdf_3.pdf
DOIs:
10.1088/0957-4484/27/5/055705

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence
Source: FindIt
Source-ID: 277080207
Research output: Research - peer-review ; Journal article – Annual report year: 2016