Steam reforming of ethanol over Ni-based catalysts: Effect of feed composition on catalyst stability - DTU Orbit (21/01/2019)

Steam reforming of ethanol over Ni-based catalysts: Effect of feed composition on catalyst stability

In this work the effects of steam-to-carbon ratio (S/C), and addition of H2 or O2 to the feed on the product yields and carbon deposition in the steam reforming (SR) of ethanol over Ni/MgAl2O4, Ni/Ce0.6Zr0.4O2, and Ni/CoO2 at 600 °C have been investigated. Increasing the S/C-ratio from 1.6 to 8.3 over Ni/MgAl2O4 increased conversion of ethanol as well as the yield of H2, while the carbon deposition and yield of hydrocarbons decreased. Oxygen addition at S/C-ratio of 6 over Ni/MgAl2O4, Ni/Co0.6Zr0.4O2, and Ni/CoO2 increased conversion, decreased the yield of hydrocarbons, and led to a decrease in the carbon deposition. Carbon deposition was almost eliminated over Ni/MgAl2O4 and Ni/Co0.6Zr0.4O2 at an O/C-ratio of roughly 0.8 or higher. The penalty of adding O2 was a decrease in the yield of H2 from 70% at O/C = 0 to 50% at O/C = 0.8–1. A 90 h test at O/C = 1.1, S/C = 6, and 600 °C over Ni/MgAl2O4 showed stable behavior and an average rate of carbon deposition of less than 7 μg C/gCat h. The results indicate that stable operation of ethanol SR is only possible under oxidative conditions.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Department of Chemistry
Contributors: Trane-Restrup, R., Dahl, S., Jensen, A. D.
Pages: 7735-7746
Publication date: 2014
Peer-reviewed: Yes

Publication information
Volume: 39
Issue number: 15
ISSN (Print): 0360-3199
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.1 SJR 1.116 SNIP 1.267
Web of Science (2017): Impact factor 4.229
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.74 SJR 1.145 SNIP 1.315
Web of Science (2016): Impact factor 3.582
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.46 SJR 1.27 SNIP 1.314
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.54 SJR 1.207 SNIP 1.484
Web of Science (2014): Impact factor 3.313
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.38 SJR 1.265 SNIP 1.449
Web of Science (2013): Impact factor 2.93
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.96 SJR 1.499 SNIP 1.708
Web of Science (2012): Impact factor 3.548
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes