Imaging with X-ray computed tomography (CT) enables non-destructive 3D characterisations of the micro-structure inside fibre composites. In this paper we validate the use of X-ray CT coupled with image analysis for characterising unidirectional (UD) fibre composites. We compare X-ray CT at different resolutions to optical microscopy (OM) and scanning electron microscopy (SEM), where we characterise fibres by their diameters and positions. In addition to comparing individual fibre diameters, we also model their spatial distribution, and compare the obtained model parameters. Our study shows that X-ray CT is a high precision technique for characterising fibre composites and, with our suggested image analysis method for fibre detection, high precision is also obtained at low resolutions. This has great potential, since it allows larger fields of view to be analysed. Besides analysing representative volumes with high precision, we demonstrate that based on our methodology for individual fibre segmentation it is now possible to study complete bundles at the fibre scale and reveal inhomogeneities in the physical sample.
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.956 SNIP 2.473
Web of Science (2010): Impact factor 2.863
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.738 SNIP 2.12
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.876 SNIP 2.276
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.408 SNIP 2.212
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.826 SNIP 2.696
Scopus rating (2005): SJR 1.629 SNIP 2.221
Scopus rating (2004): SJR 1.616 SNIP 1.956
Scopus rating (2003): SJR 1.333 SNIP 1.683
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.91 SNIP 1.613
Scopus rating (2001): SJR 1.397 SNIP 1.423
Scopus rating (2000): SJR 0.877 SNIP 1.207
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.018 SNIP 1.4
Original language: English
Keywords: Geometrical characterisation, Polymer-matrix composites (PMCs), Glass fibres, Statistics, Non-destructive testing
DOIs: 10.1016/j.compscitech.2018.03.027
Source: PublicationPreSubmission
Source-ID: 145753554
Research output: Research - peer-review › Journal article – Annual report year: 2018