Statistical validation of individual fibre segmentation from tomograms and microscopy

Imaging with X-ray computed tomography (CT) enables non-destructive 3D characterisations of the micro-structure inside fibre composites. In this paper we validate the use of X-ray CT coupled with image analysis for characterising unidirectional (UD) fibre composites. We compare X-ray CT at different resolutions to optical microscopy (OM) and scanning electron microscopy (SEM), where we characterise fibres by their diameters and positions. In addition to comparing individual fibre diameters, we also model their spatial distribution, and compare the obtained model parameters. Our study shows that X-ray CT is a high precision technique for characterising fibre composites and, with our suggested image analysis method for fibre detection, high precision is also obtained at low resolutions. This has great potential, since it allows larger fields of view to be analysed. Besides analysing representative volumes with high precision, we demonstrate that based on our methodology for individual fibre segmentation it is now possible to study complete bundles at the fibre scale and reveal inhomogeneities in the physical sample.

General information
State: Published
Pages: 208-215
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Composites Science and Technology
Volume: 160
ISSN (Print): 0266-3538
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.59 SJR 1.702 SNIP 1.912
Web of Science (2017): Impact factor 5.16
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.37 SJR 1.59 SNIP 2.027
Web of Science (2016): Impact factor 4.873
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.44 SJR 1.456 SNIP 1.964
Web of Science (2015): Impact factor 3.897
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.62 SJR 1.751 SNIP 2.435
Web of Science (2014): Impact factor 3.569
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.56 SJR 1.718 SNIP 2.54
Web of Science (2013): Impact factor 3.633
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.12 SJR 1.872 SNIP 2.761
Web of Science (2012): Impact factor 3.328
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2