Statistical Surface Recovery: A Study on Ear Canals

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2012

View graph of relations

We present a method for surface recovery in partial surface scans based on a statistical model. The framework is based on multivariate point prediction, where the distribution of the points are learned from an annotated data set. The training set consist of surfaces with dense correspondence that are Procrustes aligned. The average shape and point covariances can be estimated from this set. It is shown how missing data in a new given shape can be predicted using the learned statistics. The method is evaluated on a data set of 29 scans of ear canal impressions. By using a leave-one-out approach we reconstruct every scan and compute the point-wise prediction error. The evaluation is done for every point on the surface and for varying hole sizes. Compared to state-of-the art surface reconstruction algorithm, the presented methods gives very good prediction results.
Original languageEnglish
Title of host publicationMesh Processing in Medical Image Analysis : MeshMed 2012 Proceedings
Publication date2012
ISBN (print)978-3-642-33462-7
ISBN (electronic)978-3-642-33463-4
StatePublished - 2012
Event15th International Conference on Medical Image Computing and Computer Assisted Intervention - Nice, France


Workshop15th International Conference on Medical Image Computing and Computer Assisted Intervention
???event.location???Acropolis Convention and Exhibition Center
Period01/10/2012 → …
Internet address
NameLecture Notes in Computer Science
ISSN (Print)0302-9743
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 12310379