Statistical modelling of the interplay between solute shape and rejection in porous membranes

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{a2fe4d7066d94aa7a2d9728f23af56a4,
title = "Statistical modelling of the interplay between solute shape and rejection in porous membranes",
keywords = "Rejection coefficient, Membrane separation, Porous membrane, Statistical model, Prolate ellipsoids",
publisher = "Pergamon",
author = "Frank Vinther and Manuel Pinelo and Morten Brøns and Gunnar Jonsson and Meyer, {Anne S.}",
year = "2012",
doi = "10.1016/j.seppur.2012.01.032",
volume = "89",
pages = "261--269",
journal = "Separation and Purification Technology",
issn = "1383-5866",

}

RIS

TY - JOUR

T1 - Statistical modelling of the interplay between solute shape and rejection in porous membranes

A1 - Vinther,Frank

A1 - Pinelo,Manuel

A1 - Brøns,Morten

A1 - Jonsson,Gunnar

A1 - Meyer,Anne S.

AU - Vinther,Frank

AU - Pinelo,Manuel

AU - Brøns,Morten

AU - Jonsson,Gunnar

AU - Meyer,Anne S.

PB - Pergamon

PY - 2012

Y1 - 2012

N2 - The structural conformation of complex molecules, e.g., polymers and proteins, is determined by several factors like composition of the basic structural units, charge, and properties of the surrounding solvent. In absence of any chemical or physical interaction solute–solute and/or solute–membrane, it can be expected that the possibility for a solute particle to enter the membrane pore will only depend upon the relation between such molecular conformation and pore size. The objective of the present study is to use geometric and statistical modelling to determine the effect of particle elongation – from spherical to being increasingly prolate ellipsoidal – on the possibility of entering the pore, and, in turn, on the macroscopic distribution coefficient, K, and overall retention during filtration. The model showed that the value of K was maximal when the longer of the radii in the prolate ellipsoid was approximately equal to the radius of the pores, in case the spherical size of the particle was smaller than the membrane pore. Furthermore, for spherical particles larger than the pore, such a maximum was found to occur after the smaller of the radii was smaller than the pore radius. Either for spherical particles bigger or smaller than the pore radius, K was monotonically decreasing towards zero as the particles became more elongated. When relating the values of K to the friction model, the maximal rejection coefficient was found to reach a characteristic minimum when changing shape. The results suggested that the retention during porous membrane filtration can be manipulated when working with solute particles prone to alter conformation via, e.g., adding proper functional groups to the molecule, or modifying charge density/distribution by varying pH.

AB - The structural conformation of complex molecules, e.g., polymers and proteins, is determined by several factors like composition of the basic structural units, charge, and properties of the surrounding solvent. In absence of any chemical or physical interaction solute–solute and/or solute–membrane, it can be expected that the possibility for a solute particle to enter the membrane pore will only depend upon the relation between such molecular conformation and pore size. The objective of the present study is to use geometric and statistical modelling to determine the effect of particle elongation – from spherical to being increasingly prolate ellipsoidal – on the possibility of entering the pore, and, in turn, on the macroscopic distribution coefficient, K, and overall retention during filtration. The model showed that the value of K was maximal when the longer of the radii in the prolate ellipsoid was approximately equal to the radius of the pores, in case the spherical size of the particle was smaller than the membrane pore. Furthermore, for spherical particles larger than the pore, such a maximum was found to occur after the smaller of the radii was smaller than the pore radius. Either for spherical particles bigger or smaller than the pore radius, K was monotonically decreasing towards zero as the particles became more elongated. When relating the values of K to the friction model, the maximal rejection coefficient was found to reach a characteristic minimum when changing shape. The results suggested that the retention during porous membrane filtration can be manipulated when working with solute particles prone to alter conformation via, e.g., adding proper functional groups to the molecule, or modifying charge density/distribution by varying pH.

KW - Rejection coefficient

KW - Membrane separation

KW - Porous membrane

KW - Statistical model

KW - Prolate ellipsoids

UR - http://www.journals.elsevier.com/separation-and-purification-technology/

U2 - 10.1016/j.seppur.2012.01.032

DO - 10.1016/j.seppur.2012.01.032

JO - Separation and Purification Technology

JF - Separation and Purification Technology

SN - 1383-5866

VL - 89

SP - 261

EP - 269

ER -