Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem - DTU Orbit (01/12/2018)

Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem

We consider the multi-frequency inverse source problem for the scalar Helmholtz equation in the plane. The goal is to reconstruct the source term in the equation from measurements of the solution on a surface outside the support of the source. We study the problem in a certain finite dimensional setting: From measurements made at a finite set of frequencies we uniquely determine and reconstruct sources in a subspace spanned by finitely many Fourier-Bessel functions. Further, we obtain a constructive criterion for identifying a minimal set of measurement frequencies sufficient for reconstruction, and under an additional, mild assumption, the reconstruction method is shown to be stable. Our analysis is based on a singular value decomposition of the source-to-measurement forward operators and the distribution of positive zeros of the Bessel functions of the first kind. The reconstruction method is implemented numerically and our theoretical findings are supported by numerical experiments.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Scientific Computing, Neutrons and X-rays for Materials Physics
Contributors: Karamehmedovic, M., Kirkeby, A., Knudsen, K.
Number of pages: 24
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Inverse Problems
Volume: 34
Article number: 065004
ISSN (Print): 0266-5611
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.91 SJR 1.209 SNIP 1.419
Web of Science (2017): Impact factor 1.946
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.84 SJR 1.49 SNIP 1.414
Web of Science (2016): Impact factor 1.62
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.82 SJR 1.416 SNIP 1.431
Web of Science (2015): Impact factor 1.651
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.63 SJR 1.252 SNIP 1.408
Web of Science (2014): Impact factor 1.323
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.13 SJR 1.215 SNIP 1.615
Web of Science (2013): Impact factor 1.802
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.15 SJR 1.258 SNIP 1.838
Web of Science (2012): Impact factor 1.896
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.9 SJR 1.208 SNIP 1.563
Web of Science (2011): Impact factor 1.88
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.409 SNIP 1.63
Web of Science (2010): Impact factor 2.138
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.397 SNIP 1.757
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.228 SNIP 1.853
Scopus rating (2007): SJR 1.042 SNIP 1.966
Scopus rating (2006): SJR 0.924 SNIP 1.788
Scopus rating (2005): SJR 1.15 SNIP 1.936
Scopus rating (2004): SJR 0.8 SNIP 1.567
Scopus rating (2003): SJR 0.796 SNIP 1.399
Scopus rating (2002): SJR 1.112 SNIP 1.459
Scopus rating (2001): SJR 0.972 SNIP 1.499
Scopus rating (2000): SJR 0.766 SNIP 1.593
Scopus rating (1999): SJR 0.881 SNIP 1.394
Original language: English
DOIs:
10.1088/1361-6420/aaba83
Source: PublicationPreSubmission
Source-ID: 145802355
Research output: Research - peer-review › Journal article – Annual report year: 2018