Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography - DTU Orbit (16/01/2019)

Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography

When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

General information
State: Published
Organisations: Center for Electron Nanoscopy, Department of Physics, Experimental Surface and Nanomaterials Physics, Karlsruhe Institute of Technology, Friedrich-Alexander University Erlangen-Nürnberg, Deutsches Elektronensynchroton DESY, Universität Hamburg
Number of pages: 12
Pages: 501-512
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Microscopy and Microanalysis
Volume: 23
Issue number: 3
ISSN (Print): 1431-9276
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.49 SJR 0.292 SNIP 0.275
Web of Science (2017): Impact factor 2.124
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.5 SJR 0.31 SNIP 0.279
Web of Science (2016): Impact factor 1.891
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.57 SJR 0.311 SNIP 0.195
Web of Science (2015): Impact factor 1.73
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.41 SJR 0.301 SNIP 0.46
Web of Science (2014): Impact factor 1.872
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.55 SJR 0.286 SNIP 0.279
Web of Science (2013): Impact factor 2.161
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.52 SJR 0.327 SNIP 0.408
Web of Science (2012): Impact factor 2.495
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.32 SJR 0.286 SNIP 0.168
Web of Science (2011): Impact factor 3.007
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.27 SNIP 0.148
Web of Science (2010): Impact factor 3.259
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.264 SNIP 0.292
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.225 SNIP 0.326
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.236 SNIP 0.117
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.214 SNIP 0.233
Scopus rating (2005): SJR 0.173 SNIP 0.098
Scopus rating (2004): SJR 0.177 SNIP 0.23
Scopus rating (2003): SJR 0.208 SNIP 0.404
Scopus rating (2002): SJR 0.259 SNIP 0.888
Scopus rating (2001): SJR 0.489 SNIP 0.838
Scopus rating (2000): SJR 0.623 SNIP 0.333
Scopus rating (1999): SJR 0.725 SNIP 0.741
Original language: English
Keywords: ETEM, X-ray microscopy, Core–shell catalyst, Correlative imaging, Dimethyl ether
DOIs:
10.1017/S1431927617000332
Source: FindIt
Source-ID: 2355986781
Research output: Research - peer-review › Journal article – Annual report year: 2017