Stabilisation of amorphous furosemide increases the oral drug bioavailability in rats - DTU Orbit (22/12/2018)

Stabilisation of amorphous furosemide increases the oral drug bioavailability in rats

A glass solution of the amorphous sodium salt of furosemide (ASSF) and polyvinylpyrrolidone (PVP) (80: 20 w/w%) was prepared by spray drying. It was investigated if PVP was able to stabilise ASSF during storage and dissolution and whether this influenced the in vivo performance of the glass solution after oral dosing to rats. The glass solution had a glass transition temperature of 121.3 +/- 0.5 degrees C, which was significantly higher than that of the pure drug (101.2 degrees C). ASSF in the glass solution was stable for at least 168 days when stored at 20 degrees C and 0% relative humidity. The glass solution exhibited fast dissolution in simulated intestinal medium, pH 6.5; the intrinsic dissolution rate was found to be 10.1 +/- 0.6 mg/cm(2)/min, which was significantly faster than the pure ASSF. When investigating the stability during dissolution in stimulated intestinal medium at pH 6.5, the ASSF in the glass solution showed signs of crystallinity after 1 min of dissolution, but crystallised to a lesser extent than pure ASSF. The stabilising effect of PVP on ASSF, led to improved relative oral bioavailability in rats of 263%, when compared to the pure ASSF. (C) 2015 Elsevier B.V. All rights reserved.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Nanoprobes, University of Copenhagen
Contributors: Nielsen, L. H., Rades, T., Müllertz, A.
Number of pages: 7
Pages: 334-340
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: International Journal of Pharmaceutics
Volume: 490
Issue number: 1-2
ISSN (Print): 0378-5173
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.06 SJR 1.172 SNIP 1.27
Web of Science (2017): Impact factor 3.862
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.24 SJR 1.323 SNIP 1.386
Web of Science (2016): Impact factor 3.649
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.2 SJR 1.298 SNIP 1.45
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.13 SJR 1.347 SNIP 1.551
Web of Science (2014): Impact factor 3.65
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.17 SJR 1.377 SNIP 1.605
Web of Science (2013): Impact factor 3.785
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.1 SJR 1.552 SNIP 1.637
Web of Science (2012): Impact factor 3.458
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.01 SJR 1.493 SNIP 1.619
Web of Science (2011): Impact factor 3.35
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.574 SNIP 1.608
Web of Science (2010): Impact factor 3.607
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.399 SNIP 1.53
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.227 SNIP 1.575
Scopus rating (2007): SJR 1.186 SNIP 1.527
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.995 SNIP 1.398
Scopus rating (2005): SJR 1.043 SNIP 1.589
Scopus rating (2004): SJR 1.045 SNIP 1.464
Scopus rating (2003): SJR 0.981 SNIP 1.355
Scopus rating (2002): SJR 0.793 SNIP 1.265
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.74 SNIP 1.047
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.703 SNIP 1.05
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.616 SNIP 0.978
Original language: English
Keywords: Furosemide, Polyvinylpyrrolidone, Glass solution, Solid dispersion, Amorphous, Oral bioavailability
Electronic versions:
Stabilisation_of_amorphous_furosemide_increases_the_oral_drug_bioavailability_in_rats_post_print.pdf
DOIs:
10.1016/j.ijpharm.2015.05.063
Source: FindIt
Source-ID: 275284991
Research output: Research - peer-review › Journal article – Annual report year: 2015