Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades - DTU Orbit (19/01/2019)

Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades

The influx of exogenous substrates into cellular reaction cascades on the seconds time scale is directly observable by NMR spectroscopy when using nuclear spin polarization enhancement. Conventional NMR assignment spectra for the identification of reaction intermediates are not applicable in these experiments due to the non-equilibrium nature of the nuclear spin polarization enhancement. We show that ambiguities in the intracellular identification of transient reaction intermediates can be resolved by experimental schemes using site-specific isotope labelling, optimised referencing and response to external perturbations.

General information
State: Published
Organisations: Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Center for Magnetic Resonance, Department of Chemistry, Organic Chemistry
Contributors: Jensen, P. R., Meier, S.
Number of pages: 4
Pages: 823-826
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Analyst
Volume: 141
Issue number: 3
ISSN (Print): 0003-2654
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.8
Web of Science (2017): Impact factor 3.864
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.92
Web of Science (2016): Impact factor 3.885
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.07
Web of Science (2015): Impact factor 4.033
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.1
Web of Science (2014): Impact factor 4.107
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.11
Web of Science (2013): Impact factor 3.906
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.88
Web of Science (2012): Impact factor 3.969
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1