Speciation analysis of 129I, 137Cs, 232Th, 238U, 239Pu and 240Pu in environmental soil and sediment

The environmental mobility and bioavailability of radionuclides are related to their physicochemical forms, namely species. We here present a speciation analysis of important radionuclides including 129I (also 127I), 137Cs, 232Th, 238U and plutonium isotopes (239Pu and 240Pu) in soil (IAEA-375) and sediment (NIST-4354) standard reference materials and two fresh sediment samples from Øvre Heimdalsvatnet Lake, Norway. A modified sequential extraction protocol was used for the speciation analysis of these samples to obtain fractionation information of target radionuclides. Analytical results reveal that the partitioning behaviour, and thus the potential mobility and bioavailability, are exclusively featured for the individual radionuclide. Iodine is relatively mobile and readily binds to organic matter, while plutonium is mainly bound to both organic matter and nitric acid leachable fractions. Thorium is predominated in nitric acid leachable fraction and caesium is primarily observed in nitric acid and aqua regia leachable fractions and residue. Our analytical results reveal that around 50% of uranium might still remain in the residue which could not be extracted with aggressive acid, namely, aqua regia.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radioecology and Tracer Studies, United Arab Emirates University, Uppsala University
Pages: 1698-1708
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Applied Radiation and Isotopes
Volume: 70
Issue number: 8
ISSN (Print): 0969-8043
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.15 SJR 0.528 SNIP 0.973
Web of Science (2017): Impact factor 1.123
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.17 SJR 0.537 SNIP 1.027
Web of Science (2016): Impact factor 1.128
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.15 SJR 0.547 SNIP 0.999
Web of Science (2015): Impact factor 1.136
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.27 SJR 0.574 SNIP 1.203
Web of Science (2014): Impact factor 1.231
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.24 SJR 0.526 SNIP 0.953
Web of Science (2013): Impact factor 1.056
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.29 SJR 0.671 SNIP 1.151
Web of Science (2012): Impact factor 1.179
ISI indexed (2012): ISI indexed yes