Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

  • Author: Hurkmans, R.T.W.L.

    University of Bristol, United Kingdom

  • Author: Bamber, J.L.

    University of Bristol, United Kingdom

  • Author: Sørensen, Louise Sandberg

    Geodynamics, National Space Institute, Technical University of Denmark, Elektrovej, 2800, Kgs. Lyngby, Denmark

  • Author: Joughin, I.R.

    University of Washington, United States

  • Author: Davis, C.H.

    Center for Geospatial Intelligence, University of Missouri, United States

  • Author: Krabill, W.B.

    NASA Goddard Space Flight Center, United States

View graph of relations

Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dH/dt) data over the area of interest. The largest dH/dt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dH/dt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbræ, an outlet glacier for which widespread airborne validation data are available from NASA's Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dH/dt, and their spatiotemporal equivalents (ST-OK and ST-KED). KED assumes a linear relationship between spatial gradients of velocity and dH/dt, which is confirmed for both negative (Pearson's correlation ρ < −0.85) and, to a lesser degree, positive (ρ = 0.73) dH/dt values. When compared to ATM data, KED and ST-KED yield more realistic spatial patterns and higher thinning rates (over 20 m yr−1 as opposed to 7 m yr−1 for OK). Spatiotemporal kriging smooths inter-annual variability and improves interpolation in periods with sparse data coverage and we conclude, therefore, that ST-KED produces the best results. Using this method increases volume loss estimates from Jakobshavn Isbræ by up to 20% compared to those obtained by OK. The proposed interpolation method will improve ice sheet mass balance reconstructions from existing and past satellite altimeter data sets, with generally poor sampling of outlet glaciers.
Original languageEnglish
JournalJournal of Geophysical Research
Publication date2012
Volume117
PagesF03001
Number of pages16
ISSN0148-0227
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 4
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 10328180