Space-Efficient Re-Pair Compression

Re-Pair [5] is an effective grammar-based compression scheme achieving strong compression rates in practice. Let \(n, \sigma, \) and \(d \) be the text length, alphabet size, and dictionary size of the final grammar, respectively. In their original paper, the authors show how to compute the Re-Pair grammar in expected linear time and \(5n + 4d^2 + 4d + \sqrt{n} \) words of working space on top of the text. In this work, we propose two algorithms improving on the space of their original solution. Our model assumes a memory word of \(\lfloor \log_2 n \rfloor \) bits and a re-writable input text composed by \(n \) such words. Our first algorithm runs in expected \(O(n/\varepsilon) \) time and uses \((1+\varepsilon)n+\sqrt{n} \) words of space on top of the text for any parameter \(0 < \varepsilon \leq 1 \) chosen in advance. Our second algorithm runs in expected \(O(n \log n) \) time and improves the space to \(n + \sqrt{n} \) words.