Space-compatible strain gauges as an integration aid for the James Webb Space Telescope Mid-Infrared Instrument - DTU Orbit (22/12/2018)

Space-compatible strain gauges as an integration aid for the James Webb Space Telescope Mid-Infrared Instrument

Space instruments are designed to be highly optimised, mass efficient hardware required to operate in extreme environments. Building and testing is extremely costly, and damage that appears to have no impact on performance at normal ambient conditions can have disastrous implications when in operation. The Mid-Infrared Instrument is one of four instruments to be used on the James Webb Space Telescope which is due for launch in 2018. This telescope will be successor to the Hubble Space Telescope and is the largest space-based astronomy project ever to be conceived. Critical to operation of the Mid-Infrared Instrument is its primary structure, which provides both a stable platform and thermal isolation for the scientific instruments. The primary structure contains strain-absorbing flexures and this article summarises how these have been instrumented with a novel strain gauge system designed to protect the structure from damage. Compatible with space flight requirements, the gauges have been used in both ambient and cryogenic environments and were successfully used to support various tasks including integration to the spacecraft. The article also discusses limitations to using the strain gauge instrumentation and other implications that should be considered if such a system is to be used for similar applications in future.

General information
State: Published
Organisations: National Space Institute, Mechanical Engineering, Astrophysics, University of Leicester
Pages: 92-102
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Strain Analysis for Engineering Design
Volume: 50
Issue number: 2
ISSN (Print): 0309-3247
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.19 SJR 0.615 SNIP 0.966
Web of Science (2017): Impact factor 1.32
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.3 SJR 0.577 SNIP 0.965
Web of Science (2016): Impact factor 1.222
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.23 SJR 0.568 SNIP 1.098
Web of Science (2015): Impact factor 1.25
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.21 SJR 0.658 SNIP 1.274
Web of Science (2014): Impact factor 0.909
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.08 SJR 0.7 SNIP 1.242
Web of Science (2013): Impact factor 1.008
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.09 SJR 0.634 SNIP 1.104
Web of Science (2012): Impact factor 0.881
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.34 SJR 0.712 SNIP 1.47
Web of Science (2011): Impact factor 1.085
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.518 SNIP 1.059
Web of Science (2010): Impact factor 0.897
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.536 SNIP 0.999
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.451 SNIP 0.937
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.525 SNIP 1.01
Scopus rating (2006): SJR 0.418 SNIP 1.076
Scopus rating (2005): SJR 0.632 SNIP 0.867
Scopus rating (2004): SJR 0.968 SNIP 1.223
Scopus rating (2003): SJR 0.566 SNIP 1.128
Scopus rating (2002): SJR 0.689 SNIP 0.892
Scopus rating (2001): SJR 0.683 SNIP 1.213
Scopus rating (2000): SJR 0.841 SNIP 1.434
Scopus rating (1999): SJR 0.8 SNIP 0.896
Original language: English
Keywords: Space, Cryogenics, Outgassing, Hexapod, Alignment, Integration aid
Electronic versions:
The_Journal_of_Strain_Analysis_for_Engineering_Design_2015_Samara_Ratna_92_102.pdf
DOIs:
10.1177/0309324714558149
Source: FindIt
Source-ID: 273898760
Research output: Research - peer-review ; Journal article – Annual report year: 2015