USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, Center for Biological Sequence Analysis, Department of Systems Biology, Department of Chemistry, Drug Resistance and Community Dynamics, University of Copenhagen
Authors: Genee, H. J. (Intern), Bonde, M. T. (Intern), Bagger, F. O. (Ekstern), Jespersen, J. B. (Intern), Sommer, M. O. A. (Intern), Wernersson, R. (Intern), Olsen, L. R. (Intern)
Number of pages: 8
Pages: 342-349
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: A C S Synthetic Biology
Volume: 4
Issue number: 3
ISSN (Print): 2161-5063
Ratings:
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.7 SJR 2.736 SNIP 1.024
Web of Science (2016): Indexed yes
Scopus rating (2015): SJR 2.269 SNIP 1.049 CiteScore 4.41
Web of Science (2015): Indexed yes
Scopus rating (2014): SJR 3.783 SNIP 1.219 CiteScore 3.84
Web of Science (2014): Indexed yes
Scopus rating (2013): SJR 1.796 SNIP 0.859 CiteScore 3.42
ISI indexed (2013): ISI indexed yes
ISI indexed (2012): ISI indexed no
Original language: English
DNA assembly, USER cloning, Primer design, Site-directed mutagenesis, Point mutation, Web server
DOIs: 10.1021/sb500194z
Source: FindIt
Source-ID: 267415638
Publication: Research - peer-review › Journal article – Annual report year: 2014