Slow light and pulse propagation in semiconductor waveguides

Publication: ResearchPh.D. thesis – Annual report year: 2010

Standard

Slow light and pulse propagation in semiconductor waveguides. / Hansen, Per Lunnemann; Mørk, Jesper (Supervisor); Poel, Mike van der (Supervisor); Yvind, Kresten (Supervisor).

Kgs. Lyngby, Denmark : Technical University of Denmark (DTU), 2010. 152 p.

Publication: ResearchPh.D. thesis – Annual report year: 2010

Harvard

Hansen, PL, Mørk, J, Poel, MVD & Yvind, K 2010, Slow light and pulse propagation in semiconductor waveguides. Ph.D. thesis, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark.

APA

CBE

Hansen PL, Mørk J, Poel MVD, Yvind K 2010. Slow light and pulse propagation in semiconductor waveguides. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). 152 p.

MLA

Hansen, Per Lunnemann et al. Slow light and pulse propagation in semiconductor waveguides Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). 2010.

Vancouver

Hansen PL, Mørk J, Poel MVD, Yvind K. Slow light and pulse propagation in semiconductor waveguides. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU), 2010. 152 p.

Author

Hansen, Per Lunnemann; Mørk, Jesper (Supervisor); Poel, Mike van der (Supervisor); Yvind, Kresten (Supervisor) / Slow light and pulse propagation in semiconductor waveguides.

Kgs. Lyngby, Denmark : Technical University of Denmark (DTU), 2010. 152 p.

Publication: ResearchPh.D. thesis – Annual report year: 2010

Bibtex

@phdthesis{8ba0ce0ca2474647a475a3cad190f840,
title = "Slow light and pulse propagation in semiconductor waveguides",
publisher = "Technical University of Denmark (DTU)",
author = "Hansen, {Per Lunnemann} and Jesper Mørk and Poel, {Mike van der} and Kresten Yvind",
year = "2010",
isbn = "87-92062-36-9",

}

RIS

TY - BOOK

T1 - Slow light and pulse propagation in semiconductor waveguides

A1 - Hansen,Per Lunnemann

AU - Hansen,Per Lunnemann

A2 - Mørk,Jesper

A2 - Poel,Mike van der

A2 - Yvind,Kresten

ED - Mørk,Jesper

ED - Poel,Mike van der

ED - Yvind,Kresten

PB - Technical University of Denmark (DTU)

PY - 2010/5

Y1 - 2010/5

N2 - This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between an atomic and a quantum dot medium are discussed. Three generic schemes are compared, showing that only one of the schemes are viable for slow light in an inhomogeneously broadened medium. The principal differences between the schemes are analysed and discussed. Propagation calculations of the three schemes are presented and compared together with estimates of the achievable delay and transmission. Finally, measurements of the ultra fast gain dynamics of a quantum dot semiconductor optical amplifier are presented. The experiment is based on degenerate pump-probe transmission spectroscopy using 180 fs pulses. Both the wavelength dependence as well as the applied current density dependence are investigated. Two characteristic relaxation rates of 0.2 ps and 1 ps are extracted based on a theoretical model. The choice of model and the underlying physical processes of the measurements are discussed.

AB - This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between an atomic and a quantum dot medium are discussed. Three generic schemes are compared, showing that only one of the schemes are viable for slow light in an inhomogeneously broadened medium. The principal differences between the schemes are analysed and discussed. Propagation calculations of the three schemes are presented and compared together with estimates of the achievable delay and transmission. Finally, measurements of the ultra fast gain dynamics of a quantum dot semiconductor optical amplifier are presented. The experiment is based on degenerate pump-probe transmission spectroscopy using 180 fs pulses. Both the wavelength dependence as well as the applied current density dependence are investigated. Two characteristic relaxation rates of 0.2 ps and 1 ps are extracted based on a theoretical model. The choice of model and the underlying physical processes of the measurements are discussed.

BT - Slow light and pulse propagation in semiconductor waveguides

SN - 87-92062-36-9

ER -