Size-dependent nonlocal effects in plasmonic semiconductor particles - DTU Orbit (21/04/2019)

Size-dependent nonlocal effects in plasmonic semiconductor particles: Letter
Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Structured Electromagnetic Materials, Center for Nanostructured Graphene
Contributors: Maack, J. R., Mortensen, N. A., Wubs, M.
Number of pages: 7
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Epl
Volume: 119
Issue number: 1
Article number: 17003
ISSN (Print): 0295-5075
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.24 SJR 0.498 SNIP 0.569
Web of Science (2017): Impact factor 1.834
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Maack_2017_EPL_119_17003.pdf
DOIs:
10.1209/0295-5075/119/17003
Source: FindIt
Source-ID: 2384945463
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review