Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries - DTU Orbit (09/01/2019)

Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries

Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs) ensuring thermodynamic control over the system. If more than one reversible reaction operates in a single dynamic combinatorial library, the complexity of the system increases dramatically, and so does its possible applications. One can imagine two reversible reactions that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneously in dynamic combinatorial libraries under appropriate conditions. We describe the detailed studies necessary to establish suitable reaction conditions and highlight the analytical techniques appropriate to study this type of system.

General information

State: Published

Organisations: Department of Chemistry, Organic Chemistry, University of Copenhagen

Contributors: Diemer, S. L., Kristensen, M., Rasmussen, B., Beeren, S. R., Pittelkow, M.

Number of pages: 15

Pages: 21858-21872

Publication date: 2015

Peer-reviewed: Yes

Publication information

Journal: International Journal of Molecular Sciences

Volume: 16

Issue number: 9

ISSN (Print): 1661-6596

Ratings:

Web of Science (2019): Indexed yes

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1

Scopus rating (2017): CiteScore 3.86 SJR 1.26 SNIP 1.124

Web of Science (2017): Impact factor 3.687

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 3.73 SJR 1.235 SNIP 1.15

Web of Science (2016): Impact factor 3.226

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): CiteScore 3.37 SJR 1.157 SNIP 1.118

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): CiteScore 3.06 SJR 0.991 SNIP 1.143

Web of Science (2014): Impact factor 2.862

BFI (2013): BFI-level 1

Scopus rating (2013): CiteScore 2.83 SJR 0.769 SNIP 1.103

Web of Science (2013): Impact factor 2.339

ISI indexed (2013): ISI indexed yes

Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1

Scopus rating (2012): CiteScore 2.86 SJR 0.77 SNIP 1.195

Web of Science (2012): Impact factor 2.464

ISI indexed (2012): ISI indexed yes

BFI (2011): BFI-level 1

Scopus rating (2011): CiteScore 2.95 SJR 0.787 SNIP 1.172