Simulation of a SOFC/Battery powered vehicle - DTU Orbit (17/01/2019)

Simulation of a SOFC/Battery powered vehicle

Solid oxide fuel cells (SOFCs) have received attention in the transport sector for use as auxiliary power units or range extenders, due to the high electrical efficiency and fuelling options using existing fuel infrastructure. The present work proposes an SOFC/battery powered vehicle using compressed natural gas (CNG), liquefied natural gas (LNG) or liquefied petroleum gas (LPG) as fuels. A model was developed integrating an SOFC into a modified Nissan Leaf Acenta electrical vehicle and considering standardized driving cycles. A 30 L fuel tank and 12 kW SOFC module was simulated, including a partial oxidation fuel reformer. The results show a significant increase of the driving range when combining the battery vehicle with an SOFC. Ranges of 264 km, 705 km and 823 km using respectively CNG, LNG and LPG compared to 170 km performed by the original vehicle were calculated. Furthermore, a thorough sensitivity analysis was carried out.

General information

- State: Published
- Organisations: Department of Energy Conversion and Storage, Functional Oxides, Electrochemistry, University of Oldenburg
- Contributors: Bessékon, Y., Zielke, P., Wulff, A. C., Hagen, A.
- Pages: 1905-1918
- Publication date: 2019
- Peer-reviewed: Yes

Publication information

- Volume: 44
- Issue number: 3
- ISSN (Print): 0360-3199
- Ratings:
 - BFI (2019): BFI-level 1
 - Web of Science (2019): Indexed yes
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 4.1 SJR 1.116 SNIP 1.267
 - Web of Science (2017): Impact factor 4.229
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 3.74 SJR 1.145 SNIP 1.315
 - Web of Science (2016): Impact factor 3.582
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 3.46 SJR 1.27 SNIP 1.314
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 3.54 SJR 1.207 SNIP 1.484
 - Web of Science (2014): Impact factor 3.313
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 3.38 SJR 1.265 SNIP 1.449
 - Web of Science (2013): Impact factor 2.93
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 3.96 SJR 1.499 SNIP 1.708
 - Web of Science (2012): Impact factor 3.548
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 2
 - Scopus rating (2011): CiteScore 4.42 SJR 1.443 SNIP 1.828
Web of Science (2011): Impact factor 4.054
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.579 SNIP 1.854
Web of Science (2010): Impact factor 4.057
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.32 SNIP 1.87
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.389 SNIP 2.073
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.266 SNIP 2.197
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.061 SNIP 2.202
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.116 SNIP 1.825
Scopus rating (2004): SJR 1.232 SNIP 1.626
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.996 SNIP 1.289
Scopus rating (2002): SJR 0.748 SNIP 1.156
Scopus rating (2001): SJR 0.488 SNIP 1.197
Scopus rating (2000): SJR 0.384 SNIP 0.83
Scopus rating (1999): SJR 0.376 SNIP 0.882
Original language: English
Keywords: SOFC, Fuel cell, BEV, Hydrocarbon fuel, Driving range
DOIs:
10.1016/j.ijhydene.2018.11.126
Source: FindIt
Source-ID: 2442396631
Research output: Research - peer-review › Journal article – Annual report year: 2019