Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure and mixed-phase NiO and YSZ particles.

General information
- State: Published
- Organisations: Department of Energy Conversion and Storage, Mixed Conductors, Imaging and Structural Analysis, Atomic scale modelling and materials
- Contributors: Zielke, P., Xu, Y., Simonsen, S. B., Norby, P., Kiebach, W.
- Number of pages: 12
- Pages: 1-12
- Publication date: 2016
- Peer-reviewed: Yes

Publication information
- Journal: Journal of Supercritical Fluids
- Volume: 117
- ISSN (Print): 0896-8446
- Ratings:
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 3.27 SJR 1.015 SNIP 1.282
 - Web of Science (2017): Impact factor 3.122
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 3.01 SJR 0.982 SNIP 1.278
 - Web of Science (2016): Impact factor 2.991
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 2.71 SJR 0.904 SNIP 1.195
 - Web of Science (2015): Impact factor 2.579
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 2.89 SJR 1.128 SNIP 1.461
 - Web of Science (2014): Impact factor 2.371
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 3.18 SJR 1.099 SNIP 1.5
 - Web of Science (2013): Impact factor 2.571
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 3.38 SJR 1.337 SNIP 1.666
 - Web of Science (2012): Impact factor 2.732
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): CiteScore 3.03 SJR 1.049 SNIP 1.476