Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis - DTU Orbit (10/03/2019)

Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis

Flux balance analysis (FBA) is an increasingly useful approach for modeling the behavior of metabolic systems. However, standard FBA modeling of genetic knockouts cannot predict drug combination synergies observed between serial metabolic targets, even though such synergies give rise to some of the most widely used antibiotic treatments. Here we extend FBA modeling to simulate responses to chemical inhibitors at varying concentrations, by diverting enzymatic flux to a waste reaction. This flux diversion yields very similar qualitative predictions to prior methods for single target activity. However, we find very different predictions for combinations, where flux diversion, which mimics the kinetics of competitive metabolic inhibitors, can explain serial target synergies between metabolic enzyme inhibitors that we confirmed in *Escherichia coli* cultures. FBA flux diversion opens the possibility for more accurate genome-scale predictions of drug synergies, which can be used to suggest treatments for infections and other diseases.

General information

State: Published
Organisations: Drug Resistance and Community Dynamics, Novo Nordisk Foundation Center for Biosustainability, Bacterial Synthetic Biology, Boston University, Washington University School of Medicine, Harvard Medical School
Contributors: Krueger, A. S., Munck, C., Dantas, G., Church, G. M., Galagan, J., Lehár, J., Sommer, M. O. A.
Number of pages: 18
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: PLoS One
Volume: 11
Issue number: 1
Article number: e0147651
ISSN (Print): 1932-6203
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.01 SJR 1.164 SNIP 1.111
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.11 SJR 1.236 SNIP 1.101
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.32 SJR 1.427 SNIP 1.136
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.54 SJR 1.559 SNIP 1.148
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.94 SJR 1.772 SNIP 1.153
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.15 SJR 1.982 SNIP 1.156
Web of Science (2012): Impact factor 3.73
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.58 SJR 2.425 SNIP 1.233
Web of Science (2011): Impact factor 4.092
ISI indexed (2011): ISI indexed no