Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory - DTU Orbit (03/12/2018)

Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory

The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanism and for fabricating analytical devices for detection of malignant cells over-expressing folate receptors. This paper presents a study of the adsorption of FA on silver-capped silicon nanopillar substrates employing surface enhanced Raman scattering spectroscopy and density functional theory calculations. The experimentally observed vibrations from free FA and FA bound to the Ag surface display different vibrational spectra indicating chemical interaction of the molecule with the metal surface. Density functional theory calculations show that the Ag–FA interaction is primarily through the nitrogen from the pteridine ring anchoring to the Ag metal surface. To investigate the Ag–FA binding behavior further, the adsorption isotherm of FA on the silver-capped silicon nanopillar surface is estimated. The results show a positive cooperative Ag–FA binding mechanism. That is, adsorbed FA increases the affinity of new incoming FA molecules.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Universidad Santo Tomas, Bogota
Contributors: Castillo, J., Rindzevicius, T., Wu, K., Rozo, C. E., Schmidt, M. S., Boisen, A.
Pages: 1087-1094
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Raman Spectroscopy
Volume: 46
Issue number: 11
ISSN (Print): 0377-0486
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.58 SJR 0.888 SNIP 1.05
Web of Science (2017): Impact factor 2.879
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.71 SJR 0.926 SNIP 1.115
Web of Science (2016): Impact factor 2.969
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.25 SJR 1.02 SNIP 0.891
Web of Science (2015): Impact factor 2.395
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.53 SJR 1.15 SNIP 1.071
Web of Science (2014): Impact factor 2.671
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.49 SJR 1.029 SNIP 1.073
Web of Science (2013): Impact factor 2.519
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.63 SJR 1.288 SNIP 1.086
Web of Science (2012): Impact factor 2.679
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.73 SJR 1.262 SNIP 1.109
Web of Science (2011): Impact factor 3.087
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.446 SNIP 1.146
Web of Science (2010): Impact factor 3.137
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.292 SNIP 1.023
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.595 SNIP 1.095
Scopus rating (2007): SJR 1.259 SNIP 1.194
Scopus rating (2006): SJR 1.028 SNIP 1.081
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.922 SNIP 1.137
Scopus rating (2004): SJR 0.967 SNIP 1.141
Scopus rating (2003): SJR 0.766 SNIP 0.907
Scopus rating (2002): SJR 0.569 SNIP 0.723
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.768 SNIP 0.888
Scopus rating (2000): SJR 0.638 SNIP 0.727
Scopus rating (1999): SJR 0.655 SNIP 0.929
Original language: English
Keywords: SERS, Nanopillar, Silver, Folic acid, Adsorption isotherm
DOI:
10.1002/jrs.4734
Source: PublicationPreSubmission
Source-ID: 112799151
Research output: Research - peer-review › Journal article – Annual report year: 2015