Short-term nighttime wind turbine noise and cardiovascular events: A nationwide case-crossover study from Denmark

Aims: The number of people exposed to wind turbine noise (WTN) is increasing. WTN is reported as more annoying than traffic noise at similar levels. Long-term exposure to traffic noise has consistently been associated with cardiovascular disease, whereas effects of short-term exposure are much less investigated due to little day-to-day variation of e.g. road traffic noise. WTN varies considerably due to changing weather conditions allowing investigation of short-term effects of WTN on cardiovascular events. Methods and results: We identified all hospitalisations and deaths from stroke (16,913 cases) and myocardial infarction (MI) (17,559 cases) among Danes exposed to WTN between 1982 and 2013. We applied a time-stratified, case-crossover design. Using detailed data on wind turbine type and hourly wind data at each wind turbine, we simulated mean nighttime outdoor (10â€“10,000 Hz) and nighttime low frequency (LF) indoor WTN (10â€“160 Hz) over the 4 days preceding diagnosis and reference days. For indoor LF WTN between 10 and 15 dB(A) and above 15 dB(A), odds ratios (ORs) for MI were 1.27 (95% confidence interval (CI): 0.97â€“1.67; cases = 198) and 1.62 (95% CI: 0.76â€“3.45; cases = 21), respectively, when compared to indoor LF WTN below 5 dB(A). For stroke, corresponding ORs were 1.17 (95% CI: 0.95â€“1.69; cases = 166) and 2.30 (95% CI: 0.96â€“5.50; cases = 15). The elevated ORs above 15 dB(A) persisted across sensitivity analyses. When looking at specific lag times, noise exposure one day before MI events and three days before stroke events were associated with the highest ORs. For outdoor WTN at night, we observed both increased and decreased risk estimates. Conclusion: This study did not provide conclusive evidence of an association between WTN and MI or stroke. It does however suggest that indoor LF WTN at night may trigger cardiovascular events, whereas these events seemed largely unaffected by nighttime outdoor WTN. These findings need reproduction, as they were based on few cases and may be due to chance.
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.37 SJR 3.17 SNIP 2.448
Web of Science (2012): Impact factor 6.248
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.43 SJR 2.773 SNIP 2.315
Web of Science (2011): Impact factor 5.297
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.559 SNIP 1.877
Web of Science (2010): Impact factor 4.691
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.356 SNIP 2.055
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.874 SNIP 2.093
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.595 SNIP 2.194
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.972 SNIP 2.089
Scopus rating (2005): SJR 1.772 SNIP 1.742
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.348 SNIP 1.408
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.699 SNIP 0.995
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.684 SNIP 0.669
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.515 SNIP 0.954
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.618 SNIP 0.58
Scopus rating (1999): SJR 0.632 SNIP 0.723
Original language: English
Keywords: Epidemiology, Myocardial infarction, Noise, Stroke, Wind turbines
DOIs:
10.1016/j.envint.2018.02.030
Source: FindIt
Source-ID: 2396879840
Research output: Research - peer-review › Journal article – Annual report year: 2018