Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu) - DTU Orbit
(18/12/2018)

Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

We have studied the magnetic properties of two amorphous alloy ribbons $\text{Fe}_{72}\text{Cr}_{6}\text{Si}_{4}\text{Nb}_{5}\text{B}_{12}\text{Ag}_{1}$ (FCSNB-Ag) and $\text{Fe}_{72}\text{Cr}_{6}\text{Si}_{4}\text{Nb}_{5}\text{B}_{12}\text{Cu}_{1}$ (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T_C) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of $\beta = 0.369 \pm 0.005$, $\gamma = 1.359 \pm 0.005$ and $\delta = 4.7 \pm 0.1$ for FCSNB-Ag, and $\beta = 0.376 \pm 0.002$, $\gamma = 1.315 \pm 0.006$ and $\delta = 4.5 \pm 0.1$ for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Chungbuk National University, Danang University of Technology, Vietnam National University, Hanoi
Number of pages: 6
Pages: 1016-1021
Publication date: 2014
Peer-reviewed: Yes

Publication information

Journal: Journal of the Korean Physical Society
Volume: 64
Issue number: 7
ISSN (Print): 0374-4884
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.47 SJR 0.23 SNIP 0.342
Web of Science (2017): Impact factor 0.493
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.44 SJR 0.223 SNIP 0.329
Web of Science (2016): Impact factor 0.467
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.42 SJR 0.236 SNIP 0.328
Web of Science (2015): Impact factor 0.445
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.48 SJR 0.258 SNIP 0.397
Web of Science (2014): Impact factor 0.418
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.47 SJR 0.237 SNIP 0.396
Web of Science (2013): Impact factor 0.425
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.48 SJR 0.272 SNIP 0.438
Web of Science (2012): Impact factor 0.506
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.4 SJR 0.267 SNIP 0.356
Web of Science (2011): Impact factor 0.447
ISI indexed (2011): ISI indexed yes