Separation vortices and pattern formation - DTU Orbit (17/12/2018)

Separation vortices and pattern formation

In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–Pohlhausen approach to stationary boundary layers with free surfaces going through separation, and thus obtain a quantitative theory of the simplest type of hydraulic jump, where a single separation vortex is present outside the jump. A second type of jump, where an additional roller appears at the surface, cannot be captured by this approach and has not been given an adequate theoretical description. Such a model is needed to describe “polygonal” hydraulic jumps, which occur by spontaneous symmetry breaking of the latter state. Time-dependent separation is of importance in the formation of sand ripples under oscillatory flow, where the separation vortices become very strong. In this case no simple theory exists for the determination of the location and strengths of separation vortices over a wavy bottom of arbitrary profile. We have, however, recently suggested an amplitude equation describing the long-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.

General information

State: Published
Organisations: Department of Physics, Center for Fluid Dynamics
Contributors: Andersen, A. P., Bohr, T., Schnipper, T.
Pages: 329-334
Publication date: 2010
Peer-reviewed: Yes

Publication information

Journal: Theoretical and Computational Fluid Dynamics
Volume: 24
Issue number: 1-4
ISSN (Print): 0935-4964
Ratings:
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 1.39 SJR 0.47 SNIP 0.762
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 1.42 SJR 0.565 SNIP 0.785
 - Web of Science (2016): Impact factor 1.097
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 1.63 SJR 0.728 SNIP 1.376
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 2.06 SJR 0.928 SNIP 1.518
 - Web of Science (2014): Impact factor 1.8
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 1.29 SJR 0.884 SNIP 1.035
 - Web of Science (2013): Impact factor 1.746
 - ISI indexed (2013): ISI indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 0.96 SJR 0.654 SNIP 0.896
 - Web of Science (2012): Impact factor 0.881
 - ISI indexed (2012): ISI indexed yes
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): CiteScore 1.04 SJR 0.701 SNIP 1.032
 - Web of Science (2011): Impact factor 1.034