Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents

Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents

Conditions in which exhaled and dermally emitted bioeffluents could be sampled separately or together (whole-body emission) were created. Five lightly dressed males exhaled the air through a mask to another, identical chamber or without a mask to the chamber in which they were sitting; the outdoor air supply rate was the same in both chambers. The carbon dioxide concentration in the chamber with exhaled air was 2000 ppm. Chamber temperatures were 23°C or 28°C, and ozone was present or absent in the supply airflow. When dermally emitted bioeffluents were present, the perceived air quality (PAQ) was less acceptable, and the odor intensity was higher than when only exhaled bioeffluents were present. The presence or absence of exhaled bioeffluents in the unoccupied chamber made no significant difference to sensory assessments. At 28°C and with ozone present, the odor intensity increased and the PAQ was less acceptable in the chambers with whole-body bioeffluents. The concentrations of nonanal, decanal, geranylacetone, and 6-MHO were higher when dermally emitted bioeffluents were present; they increased further when ozone was present. The concentration of squalene then decreased and increased again at 28°C. Dermally emitted bioeffluents seem to play a major role in the sensory nuisance experienced when occupied volumes are inadequately ventilated.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Waseda University
Contributors: Tsushima, S., Wargocki, P., Tanabe, S.
Pages: 146-163
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Indoor Air Online
Volume: 28
Issue number: 1
ISSN (Print): 1600-0668
Ratings:
- Web of Science (2018): Indexed yes
- Scopus rating (2017): CiteScore 3.9
- Web of Science (2017): Impact factor 4.396
- Web of Science (2017): Indexed yes
- Scopus rating (2016): CiteScore 3.55
- Web of Science (2016): Indexed yes
- Scopus rating (2015): CiteScore 3.88
- Web of Science (2015): Impact factor 4.33
- Web of Science (2015): Indexed yes
- Scopus rating (2014): CiteScore 4.57
- Web of Science (2014): Impact factor 4.904
- Web of Science (2014): Indexed yes
- Scopus rating (2013): CiteScore 3.63
- ISI indexed (2013): ISI indexed no
- Web of Science (2013): Indexed yes
- Scopus rating (2012): CiteScore 2.72
- Web of Science (2012): Impact factor 3.302
- ISI indexed (2012): ISI indexed no
- Web of Science (2012): Indexed yes
- Scopus rating (2011): CiteScore 2.42
- Web of Science (2011): Impact factor 2.55
- ISI indexed (2011): ISI indexed no
- Web of Science (2011): Indexed yes
- Web of Science (2010): Impact factor 2.029
- Web of Science (2010): Indexed yes
- Web of Science (2009): Indexed yes