Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data - DTU Orbit (31/12/2018)

Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data

We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust from the observed satellite gravity field data (GOCE Direct release 3). Thus calculated residual mantle gravity anomalies are caused mainly by a heterogeneous density distribution in the upper mantle. Given a relatively small range of expected compositional density variations in the lithospheric mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling.

Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic VP velocity–density conversion for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average VP velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible uncertainties by applying different velocity-to-density conversions and by introducing variations into the crustal structure which correspond to typical resolution of high-quality and low-quality seismic models. We apply our analysis to Siberia (the West Siberian Basin and the Siberian Craton) for which a new regional seismic crustal model, SibCrust, has recently become available. For the same region, we also compute upper-mantle gravity and density anomalies based on three global crustal models (CRUST 5.1, CRUST 2.0 and CRUST 1.0) and compare the results based on four different crustal models.

A large uncertainty in the VP-to-density conversion may result in the uncertainty in lithospheric mantle density anomalies of ca. 0.02–0.03 g cm−3 (i.e. 0.5–1 per cent, which is comparable to compositional density anomalies expected for continental lithosphere mantle). Similar values of uncertainties may be caused by a 0.2 km s−1 error in average crustal VP velocities or by a 2 km uncertainty in the Moho depth. One of the largest uncertainties is caused by errors in thickness of the sedimentary layer, and a 2 km error leads to ca. 0.03 g cm−3 error in lithospheric mantle densities. Large deviations (locally ±10 km) of the Moho depth in global crustal models (CRUST 5.1, CRUST 2.0 and CRUST 1.0) from the high-resolution regional seismic model of the crust, SibCrust, may produce artefact residual mantle gravity anomalies of up to ±150 mGal locally, caused by large errors in crustal gravity corrections. These errors in gravity anomalies produce up to ca. 0.04 g cm−3 (ca. 1.2 per cent) errors in density of the lithospheric mantle, which may well correspond to the amplitude of real density anomalies in the mantle. Our results demonstrate that gravity modelling alone cannot reliably constrain the crustal structure, including the Moho depth and thickness of sediments.

General information

State: Published
Organisations: University of Copenhagen
Contributors: Herceg, M., Artemieva, I. M., Thybo, H.
Pages: 687-696
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Geophysical Journal International
Volume: 204
Issue number: 2
ISSN (Print): 0956-540X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.54 SJR 1.506 SNIP 1.195
Web of Science (2017): Impact factor 2.528
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.61 SJR 1.749 SNIP 1.465
Web of Science (2016): Impact factor 2.414
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.46 SJR 1.796 SNIP 1.354
Web of Science (2015): Impact factor 2.484
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.63 SJR 1.901 SNIP 1.473
Web of Science (2014): Impact factor 2.56
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.15 SJR 2.376 SNIP 1.677
Web of Science (2013): Impact factor 2.724
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.78 SJR 2.367 SNIP 1.43
Web of Science (2012): Impact factor 2.853
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.52 SJR 2.241 SNIP 1.248
Web of Science (2011): Impact factor 2.42
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.156 SNIP 1.389
Web of Science (2010): Impact factor 2.411
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.187 SNIP 1.512
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.243 SNIP 1.235
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.061 SNIP 1.312
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.655 SNIP 1.573
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.177 SNIP 1.448
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.07 SNIP 1.437
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.625 SNIP 1.351
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.651 SNIP 1.269
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.826 SNIP 1.312
Scopus rating (2000): SJR 2.509 SNIP 1.507
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.451 SNIP 1.36

Original language: English
Keywords: Gravity anomalies and Earth structure, Composition of the continental crust, Composition of the mantle
DOIs: 10.1093/gji/ggv431
Research output: Research - peer-review; Journal article – Annual report year: 2015