Self-supported ceramic substrates with directional porosity by mold freeze casting - DTU Orbit (03/01/2019)

Self-supported ceramic substrates with directional porosity by mold freeze casting

Manufacture of thin-film ceramic substrates with high permeability and robustness is of high technological interest. In this work thin (green state thickness ∼500 μm) porous yttria-stabilized zirconia self-supported substrates were fabricated by pouring stable colloidal aqueous suspensions in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted to be highly dependent on colloidal behaviour and freeze casting conditions. Manufactured green films were joined by lamination at room temperature and sintered to obtain symmetrical cells consisting of two porous self-supported substrate electrodes (∼420 μm) and dense yttria stabilized zirconia electrolyte (∼10 μm).

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Ceramic Engineering & Science, Applied Electrochemistry, CSIC
Contributors: Gurauskis, J., Graves, C. R., Moreno, R., Nieto, M.
Number of pages: 7
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of the European Ceramic Society
Volume: 37
Issue number: 2
ISSN (Print): 0955-2219
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 3.55 SJR 1.068 SNIP 1.698
- Web of Science (2017): Impact factor 3.794
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 3.25 SJR 1.142 SNIP 1.888
- Web of Science (2016): Impact factor 3.454
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 3.03 SJR 1.135 SNIP 1.817
- Web of Science (2015): Impact factor 2.933
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 3.16 SJR 1.163 SNIP 2.083
- Web of Science (2014): Impact factor 2.947
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 2.57 SJR 1.111 SNIP 1.79
- Web of Science (2013): Impact factor 2.307
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 2.81 SJR 1.293 SNIP 2.207
- Web of Science (2012): Impact factor 2.36
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 2.83 SJR 1.343 SNIP 2.195
- Web of Science (2011): Impact factor 2.353