Selenium prevents tumor development in a rat model for chemical carcinogenesis - DTU Orbit (16/01/2019)

Selenium prevents tumor development in a rat model for chemical carcinogenesis

Previous studies in animals and humans have shown that selenium compounds can prevent cancer development. In this work we studied the tumor preventive effect of selenium supplementation, administrated as selenite, in the initiation, promotion and progression phases in a synchronized rat model for chemically induced hepatocarcinogenesis, the resistant hepatocyte model. Selenite in supra-nutritional but subtoxic doses (1 and 5 p.p.m.) was administrated to the animals through the drinking water. Such supplementation during the initiation phase did not have a tumor preventive effect. However, selenite treatment during the promotion phase decreased the volume fraction of pre-neoplastic liver nodules from 38% in control animals to 25 (1 p.p.m.) and 14% (5 p.p.m.) in the selenite-supplemented groups. In addition the cell proliferation within the nodules decreased from 42% in the control to 22 (1 p.p.m.) and 17% (5 p.p.m.). Immunohistochemical staining for the selenoenzyme thioredoxin reductase 1 revealed an increased expression of the enzyme in liver nodules compared with the surrounding tissue. The activity was reduced to 50% in liver homogenates from selenium-treated animals but the activity of the selenoenzyme glutathione peroxidase was essentially unaltered. Selenite treatment (5 p.p.m.) during the progression phase resulted in a significantly lower volume fraction of liver tumors (14 compared with 26%) along with a decrease in cell proliferation within the tumors (34 compared with 63%). Taken together our data indicate that the carcinogenetic process may be prevented by selenium supplementation both during the promotion and the progression phase.
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.85 SJR 2.916 SNIP 1.512
Web of Science (2011): Impact factor 5.702
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.624 SNIP 1.455
Web of Science (2010): Impact factor 5.402
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.421 SNIP 1.384
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.493 SNIP 1.416
Scopus rating (2007): SJR 2.503 SNIP 1.446
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.344 SNIP 1.417
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.368 SNIP 1.467
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.303 SNIP 1.489
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.197 SNIP 1.374
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.8 SNIP 1.382
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.851 SNIP 1.31
Scopus rating (2000): SJR 1.787 SNIP 1.245
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.641 SNIP 1.23
Original language: English
DOIs: 10.1093/carcin/bgh290
Source: orbit
Source-ID: 244956
Research output: Research - peer-review › Journal article – Annual report year: 2005