Sectoral dynamics and technological convergence: an evolutionary analysis of eco-innovation in the automotive sector

We know from evolutionary theory that sectoral characteristics are important to innovation. This paper investigates if sectoral characteristics also are important to eco-innovation, a hitherto under-researched theme. We argue that research into possible sectoral patterns in eco-innovation is key to understanding green industrial dynamics and the greening of the economy. This paper investigates to what degree the economy is greening horizontally (sector-wise). Starting with a sectoral case study, we undertake a longitudinal analysis of the breath and strength of the greening of the automotive sector from 1965 to 2012, focusing on powertrain technologies. The empirical analysis is based on patent data amongst big car producers and focuses on identifying changes in two main aspects: (1) the convergence/divergence of firms’ green strategies and technologies within the automotive sector; and (2) the contribution of alternative key green technological trajectories relative to the dominant design. Our findings indicate that the evolution of relative green patenting has followed a positive, linear growth over the last decades with increasing participation of alternative propulsion technologies and increasing convergence of automakers’ strategies towards a diversified portfolio.

General information
State: Published
Organisations: Department of Management Engineering, Technology and Innovation Management
Contributors: Faria, L., Andersen, M. M.
Pages: 837-857
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Industry and Innovation
Volume: 24
Issue number: 8
ISSN (Print): 1366-2716
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.51 SJR 0.785 SNIP 0.871
Web of Science (2017): Impact factor 1.338
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.16 SJR 0.712 SNIP 0.753
Web of Science (2016): Impact factor 0.791
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.83 SJR 1.247 SNIP 1.092
Web of Science (2015): Impact factor 0.87
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.35 SJR 0.692 SNIP 0.808
Web of Science (2014): Impact factor 0.732
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.52 SJR 1.061 SNIP 0.929
Web of Science (2013): Impact factor 1.116
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.29 SJR 0.705 SNIP 0.84
Web of Science (2012): Impact factor 0.79
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.42 SJR 0.71 SNIP 0.923
Web of Science (2011): Impact factor 0.75
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.397 SNIP 1.493
Web of Science (2010): Impact factor 1.831
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1 SNIP 1.154
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.29 SNIP 1.33
Scopus rating (2007): SJR 0.839 SNIP 1.297
Scopus rating (2006): SJR 0.753 SNIP 1.01
Scopus rating (2005): SJR 0.638 SNIP 0.761
Scopus rating (2004): SJR 0.59 SNIP 0.755
Scopus rating (2003): SJR 0.634 SNIP 1.476
Scopus rating (2002): SJR 0.864 SNIP 0.9
Scopus rating (2001): SJR 0.752 SNIP 0.873
Scopus rating (2000): SJR 0.383 SNIP 0.304
Scopus rating (1999): SJR 0.344 SNIP 0.553
Original language: English
Electronic versions:
CIAI_2015_0244_last_rev.pdf. Embargo ended: 02/11/2018
DOIs:
10.1080/13662716.2017.1319801
Source: FindIt
Source-ID: 2358234403
Research output: Research - peer-review › Journal article – Annual report year: 2017