The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled by a continuum damage mechanics (CDM) approach. The behaviour of the porous metal support, in the range from 1 to 17MPa and temperatures between 650 and 700°C, was combined and compared with data from literature of Crofer® 22 APU, taken as zero porosity reference material. The variation of the elastic modulus as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Mixed Conductors, University of Naples Federico II
Contributors: Esposito, L., Boccaccini, D. N., Pucillo, G. P., Frandsen, H. L.
Pages: 155-161
Publication date: 2017
Peer-reviewed: Yes

Publication information
Volume: 691
ISSN (Print): 0921-5093
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.76 SJR 1.694 SNIP 1.943
Web of Science (2017): Impact factor 3.414
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.39 SJR 1.669 SNIP 1.913
Web of Science (2016): Impact factor 3.094
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.01 SJR 1.742 SNIP 1.858
Web of Science (2015): Impact factor 2.647
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.32 SJR 2.235 SNIP 2.546
Web of Science (2014): Impact factor 2.567
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.86 SJR 1.868 SNIP 2.235
Web of Science (2013): Impact factor 2.409
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.5 SJR 1.744 SNIP 2.358
Web of Science (2012): Impact factor 2.108
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.59 SJR 1.74 SNIP 2.414
Web of Science (2011): Impact factor 2.003
ISI indexed (2011): ISI indexed yes
<table>
<thead>
<tr>
<th>Year</th>
<th>BFI Rating</th>
<th>SJR</th>
<th>SNIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>BFI-level 2</td>
<td>1.723</td>
<td>2.114</td>
</tr>
<tr>
<td>2009</td>
<td>BFI-level 2</td>
<td>1.57</td>
<td>1.757</td>
</tr>
<tr>
<td>2008</td>
<td>BFI-level 2</td>
<td>1.682</td>
<td>1.859</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>1.326</td>
<td>1.701</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>1.337</td>
<td>1.756</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>1.201</td>
<td>1.444</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>1.288</td>
<td>1.625</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>1.42</td>
<td>1.632</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>1.413</td>
<td>1.368</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>1.157</td>
<td>1.391</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.083</td>
<td>1.084</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>1.168</td>
<td>1.072</td>
</tr>
</tbody>
</table>

Original language: English

Keywords: Metal supports, Creep, High-temperature ferritic stainless steel, Solid oxide fuel cells

DOI: 10.1016/j.msea.2017.03.050

Source: FindIt

Source-ID: 2355859542

Research output: Research - peer-review | Journal article – Annual report year: 2017