Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing

From early 2003 to mid-2013, the total mass of ice in Greenland declined at a progressively increasing rate. In mid-2013, an abrupt reversal occurred, and very little net ice loss occurred in the next 12-18 months. Gravity Recovery and Climate Experiment (GRACE) and global positioning system (GPS) observations reveal that the spatial patterns of the sustained acceleration and the abrupt deceleration in mass loss are similar. The strongest accelerations tracked the phase of the North Atlantic Oscillation (NAO). The negative phase of the NAO enhances summertime warming and insolation while reducing snowfall, especially in west Greenland, driving surface mass balance (SMB) more negative, as illustrated using the regional climate model MAR. The spatial pattern of accelerating mass changes reflects the geography of NAO-driven shifts in atmospheric forcing and the ice sheet's sensitivity to that forcing. We infer that southwest Greenland will become a major future contributor to sea level rise.

General information
State: Published
Organisations: Geodesy, National Space Institute, Utrecht University, The Ohio State University, University of Arizona, Princeton University, University of Colorado Boulder, University of Liege, University of Luxembourg, iUNAVCO Inc.
Pages: 1934-1939
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Proceedings of the National Academy of Sciences of the United States of America
Volume: 116
Issue number: 6
ISSN (Print): 0027-8424
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.59 SJR 6.092 SNIP 2.626
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.56 SJR 6.576 SNIP 2.642
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.84 SJR 6.814 SNIP 2.691
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.86 SJR 6.898 SNIP 2.734
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 9.5 SJR 7.073 SNIP 2.738
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 9.49 SJR 6.868 SNIP 2.697
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 9.31 SJR 6.864 SNIP 2.646
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 6.898 SNIP 2.545
In this study, airborne gravity data from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project are compared with terrestrial gravity data in three survey blocks that cross the Canada-US border. One block (AN04) overlaps an area containing Alaska (USA) and the Yukon Territory (Canada) over a rough terrain while the other two blocks (EN05 and EN08) are within the Great Lakes-St-Lawrence River region with flat and moderate terrains. GRAV-D has an average flight altitude of about 6 km in the three blocks, in which each survey/cross line spans 240–700 km. The high flight altitude of GRAV-D puts forth a challenge for the comparisons. We have developed procedures to interpolate and continue the airborne and terrestrial gravity data to a mean flight height for each block. The remove-compute-restore Poisson method is used in the upward continuation of the terrestrial gravity data by removing and restoring the satellite-only geopotential model GOCC05S. The comparison between the datasets is done using Helmert gravity disturbances in order to satisfy the harmonic condition of the upward continuation. The comparisons show that differences between GRAV-D and terrestrial gravity data are 3.6 mGal for AN04, 1.8 mGal for EN05 and 2.3 mGal for EN08 in terms of Root Mean Square (RMS) at the mean flight height. The results can be improved for two blocks when applying a cross-over adjustment. The differences become 1.0 and 1.4 for EN05 and EN08, respectively.
Characterization of the in-flight properties of the Planck telescope
The European Space Agency’s Planck satellite was launched on 14 May 2009, and surveyed the sky stably and continuously between August 2009 and October 2013. The scientific analysis of the Planck data requires understanding the optical response of its detectors, which originates partly from a physical model of the optical system. In this paper, we use in-flight measurements of planets within similar to 1 degrees of boresight to estimate the geometrical properties of the telescope and focal plane. First, we use observed grating lobes to measure the amplitude of mechanical dimpling of the reflectors, which is caused by the hexagonal honeycomb structure of the carbon fibre reflectors. We find that the dimpling amplitude on the two reflectors is larger than expected from the ground, by 20% on the secondary and at least a factor of 2 on the primary. Second, we use the main beam shapes of 26 detectors to investigate the alignment of the various elements of the optical system, as well as the large-scale deformations of the reflectors. We develop a metric to guide an iterative fitting scheme, and are able to determine a new geometric model that fits the in-flight measurements better than the pre-flight prediction according to this metric. The new alignment model is within the mechanical tolerances expected from the ground, with some specific but minor exceptions. We find that the reflectors contain large-scale sinusoidal deformations most probably related to the mechanical supports. In spite of the better overall fit, the new model still does not fit the beam measurements at a level compatible with the needs of cosmological analysis. Nonetheless, future analysis of the Planck data would benefit from taking into account some of the features of the new model. The analysis described here exemplifies some of the limitations of in-flight retrieval of the geometry of an optical system similar to that of Planck, and provides useful information for similar efforts in future experiments.

General information
State: Published
Organisations: Astrophysics and Atmospheric Physics, National Space Institute, University of California at Santa Barbara, Universitt degli studi di Ferrara, European Space Research and Technology Centre (ESA/ESTEC), TICRA, California Institute of Technology, National Institute for Astrophysics, University Paris Diderot - Paris 7, Princeton University, Haverford College, University of British Columbia, Centre National de la Recherche Scientifique, University of Helsinki, Universite Paris-Saclay, University of Oviedo
Number of pages: 21
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Astronomy and Astrophysics
Volume: 622
Article number: A55
ISSN (Print): 0004-6361
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Cold gas in the early Universe - Survey for neutral atomic-carbon in GRB host galaxies at 1 < z< 6 from optical afterglow spectroscopy

We present a survey for neutral atomic-carbon (CI) along gamma-ray burst (GRB) sightlines, which probes the shielded neutral gas-phase in the interstellar medium (ISM) of GRB host galaxies at high redshift. We compile a sample of 29 medium- to high-resolution GRB optical afterglow spectra spanning a redshift range through most of cosmic time from 1 < z < 6. We find that seven (≈25%) of the GRBs entering our statistical sample have CI detected in absorption. It is evident that there is a strong excess of cold gas in GRB hosts compared to absorbers in quasar sightlines. We investigate the dust properties of the GRB CI absorbers and find that the amount of neutral carbon is positively correlated with the visual extinction, AV, and the strength of the 2175 Å dust extinction feature, Abump. GRBs with CI detected in absorption are all observed above a certain threshold of logN(HI)/cm−2 + [X/H] > 20.7 and a dust-phase iron column density of logN(Fe)_{dust} /cm−2 > 16.2. In contrast to the SED-derived dust properties, the strength of the CI absorption does not correlate with the depletion-derived dust properties. This indicates that the GRB CI absorbers trace dusty systems where the dust composition is dominated by carbon-rich dust grains. The observed higher metal and dust column densities of the GRB CI absorbers compared to H2- and CI-bearing quasar absorbers is mainly a consequence of how the two absorber populations are selected, but is also required in the presence of intense UV radiation fields in actively star-forming galaxies.

General information
State: Published
Organisations: National Space Institute, University of Copenhagen, European Southern Observatory, University of Iceland, CNRS, PSL Research University, Australian Astronomical Observatory, University of Leicester, University of Amsterdam, National Institute for Astrophysics
Number of pages: 13
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Astronomy & Astrophysics
Volume: 621
Article number: A20
ISSN (Print): 0004-6361
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68 SJR 2.234 SNIP 1.199
Web of Science (2016): Impact factor 5.014
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.5 SJR 2.545 SNIP 1.224
Web of Science (2015): Impact factor 5.185
Dense matter with eXTP

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.
Evaluation of a Compton camera concept using the 3D CdZnTe drift strip detectors
At DTU Space, a high-resolution 3D CZT drift strip detector has been developed and a number of prototype detectors were fabricated, allowing for sub-mm position resolution at high energies (> 100 keV), as well as high energy resolution. For spectral and spatial performance, the 3D CZT prototype detectors were characterized with a fine collimated high-energy (Cs137) monochromatic beam (0.2 mm x 40 mm) using a digitizer with which the pulse shapes of the bipolar signals from all electrodes could be analysed. Data analysis consist of position determination for single as well as double interaction events handled within the detector. The double interaction events (e.g. Compton interaction) are utilized to characterize the imaging performance of the 3D CZT drift strip detector prototype when operating as a Compton camera.

General information
State: Published
Organisations: Astrophysics and Atmospheric Physics, National Space Institute, Technical University of Denmark, University of California at Berkeley
Contributors: Owe, S. H., Kuvvetli, I., Budtz-Jørgensen, C., Zoglauer, A.
Number of pages: 11
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Instrumentation
Volume: 14
Issue number: 1
Article number: C01020
ISSN (Print): 1748-0221
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.23 SJR 0.642 SNIP 1.04
Web of Science (2017): Impact factor 1.258
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.22 SJR 0.903 SNIP 1.164
Web of Science (2016): Impact factor 1.22
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.96 SJR 0.833 SNIP 0.966
Web of Science (2015): Impact factor 1.31
HD 202772A b: A Transiting Hot Jupiter around a Bright, Mildly Evolved Star in a Visual Binary Discovered by TESS

We report the first confirmation of a hot Jupiter discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HD 202772A b. The transit signal was detected in the data from TESS Sector 1, and was confirmed to be of planetary origin through radial velocity (RV) measurements. HD 202772A b is orbiting a mildly evolved star with a period of 3.3 days. With an apparent magnitude of V = 8.3, the star is among the brightest and most massive known to host a hot Jupiter. Based on the 27 days of TESS photometry and RV data from the CHIRON, HARPS, and Tillinghast Reflector Echelle Spectrograph, the planet has a mass of $M_J = 1.017_{-0.068}^{+0.070}$ M_J and radius of $R_J = 1.545_{-0.060}^{+0.052}$ R_J, making it an inflated gas giant. HD 202772A b is a rare example of a transiting hot Jupiter around a quickly evolving star. It is also one of the most strongly irradiated hot Jupiters currently known.

General information
State: Published
Organisations: Astrophysics and Atmospheric Physics, National Space Institute
Number of pages: 11
Publication date: 2019
Peer-reviewed: Yes
Ice dynamics of union glacier from SAR offset tracking

The Antarctic ice sheet is predicted to be the major contributor to sea-level rise during the XXI century. Therefore, monitoring ice dynamics of outlet glaciers in Antarctica is of great importance to assess future sea-level rise predictions. Union Glacier is one of the major outlet glaciers of the Ellsworth Mountains and drains into the Ronne-Filchner Ice Shelf. Glaciers can be studied using remote-sensing techniques, which combined with field measurements can deliver a good approximation of its dynamics and can be used as input for glacier models. In this study we acquired high resolution Stripmap HIMAGE SAR images from the COSMO-SkyMed satellite constellation during austral summer of 2011–2012, and applied a SAR offset tracking algorithm to compute ice velocities. Then, we compared our derived velocities with field data already published. Results showed mean values of ice velocity estimated for the main trunk of the glacier are 0.043 (0.0393 SD) m d\(^{-1}\), with values reaching up to 0.325 m d\(^{-1}\), in agreement with previous studies. A model of ice thickness based on lamellar flow theory is proposed, using estimated surface ice velocity in combination with surface slope derived from TanDEM-X as input data. Comparison of our modeled ice thickness with radar data agree with a mean absolute deviation of 19.22%. From surface ice velocities we computed principal strain rates in order to assess crevasse formation and closure. Thereafter, using high resolution COSMO-SkyMed Spotlight-2 SAR images we establish a relation between surface features and acting strain components.
Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco

Water surface elevation (WSE) is an essential quantity for water resource monitoring and hydrodynamic modeling. Satellite altimetry has provided data for inland water bodies. The height that is derived from altimetry measurement is ellipsoidal height. In order to convert the ellipsoidal height to orthometric height, which has physical meaning, accurate estimates of the geoid are needed. This paper evaluates the suitability of geodetic altimetric measurements for improvement of global geoid models over a large lake in the Tibetan Plateau. CryoSat-2 and SARAL/AltiKa are used to derive the high-frequency geoid correction. A validation of the local geoid correction is performed with data from in-situ observations, a laser altimetry satellite (ICESat), a Ka-band radar altimetry satellite (SARAL) and a SAR radar altimetry satellite (Sentinel-3). Results indicate that the geodetic altimetric dataset can capture the high-resolution geoid information. By applying local geoid correction, the precision of ICESat, SARAL and Sentinel-3 retrievals are significantly improved. We conclude that using geodetic altimetry to correct for local geoid residual over large lakes significantly decreases the uncertainty of WSE estimates. These results also indicate the potential of geodetic altimetry missions to determine local geoid residual with centimeter-level accuracy, which can be used to improve global and regional geopotential models.

General information
State: Published
Organisations: Department of Environmental Engineering, Air, Land & Water Resources, National Space Institute, Geodesy, Chinese Academy of Sciences
Innovative Multi-Feed-Per-Beam Reflector Antenna for Space-Borne Conical-Scan Radiometers

We present an antenna for use on conical-scan space-borne radiometers in C band and demonstrate that stringent radiometric requirements can be met. The antenna consists of an offset reflector fed by a focal plane array in a multi-feed-per-beam configuration, so far never used in ocean observation missions. We use distinct element beams and two optimization routines for obtaining element excitation amplitudes and phases, and with either routine, and in both x- and y-polarization, compliant beams, with footprint < 20 km, distance to coast < 20 km and accuracy < 0.25 K, are obtained. These results may pave the way for use of focal plane arrays with digital beamforming in future radiometric ocean observation missions.

K2-140b and K2-180b – Characterization of a hot Jupiter and a mini-Neptune from the K2 mission

We report the independent discovery and characterization of two K2 planets: K2-180b, a mini-Neptune-sized planet in an 8.9-d orbit transiting a V=12.6 mag, metal-poor ([Fe/H] = −0.65 ± 0.10) K2V star in K2 campaign 5; K2-140b, a transiting hot Jupiter in a 6.6-d orbit around a V=12.6 mag G6V ([Fe/H] = +0.10 ± 0.10) star in K2 campaign 10. Our results are based on K2 time-series photometry combined with high-spatial resolution imaging and high-precision radial velocity measurements. We present the first mass measurement of K2-180b. K2-180b has a mass of $M_p = 11.3 ± 1.9 M_{\oplus}$ and a radius of $R_p = 2.2 ± 0.1 R_{\oplus}$, yielding a mean density of $\rho_p = 5.6 ± 1.9 g cm^{-3}$, suggesting a rocky composition. Given its
radius, K2-180b is above the region of the so-called ‘planetary radius gap’. K2-180b is in addition not only one of the densest mini-Neptune-sized planets, but also one of the few mini-Neptune-sized planets known to transit a metal-poor star. We also constrain the planetary and orbital parameters of K2-140b and show that, given the currently available Doppler measurements, the eccentricity is consistent with zero, contrary to the results of a previous study.

General information
State: Published
Organisations: Astrophysics and Atmospheric Physics, National Space Institute, Universität zu Köln, German Aerospace Center, University of Turin, Chalmers University of Technology, Leiden University, Tokyo Institute of Technology, University of Tokyo, University of La Laguna, Aarhus University, University of Texas at Austin, Princeton University, Wesleyan University, Thüringer Landessternwarte Tautenburg, National Institute for Astrophysics, National Astronomical Observatory of Japan, University of Groningen
Pages: 1807-1823
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Monthly Notices of the Royal Astronomical Society
Volume: 482
Issue number: 2
ISSN (Print): 0035-8711
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.54 SJR 2.346 SNIP 0.904
Web of Science (2017): Impact factor 5.194
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.09 SJR 2.388 SNIP 1.134
Web of Science (2016): Impact factor 4.961
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4 SJR 2.701 SNIP 1.165
Web of Science (2015): Impact factor 4.952
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.79 SJR 3.23 SNIP 1.322
Web of Science (2014): Impact factor 5.107
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.1 SJR 3.155 SNIP 1.23
Web of Science (2013): Impact factor 5.226
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.89 SJR 3.283 SNIP 1.392
Web of Science (2012): Impact factor 5.521
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Observatory science with eXTP

In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.

General information

State: Published

Organisations: National Space Institute, Astrophysics and Atmospheric Physics

Photodynamical analysis of the triply eclipsing hierarchical triple system EPIC 249432662

Using Campaign 15 data from the K2 mission, we have discovered a triply-eclipsing triple star system: EPIC 249432662. The inner eclipsing binary system has a period of 8.23 days, with shallow ~3% eclipses. During the entire 80-day campaign, there is also a single eclipse event of a third-body in the system that reaches a depth of nearly 50% and has a total duration of 1.7 days, longer than for any previously known third-body eclipse involving unevolved stars. The binary eclipses exhibit clear eclipse timing variations. A combination of photodynamical modeling of the lightcurve, as well as seven follow-up radial velocity measurements, has led to a prediction of the subsequent eclipses of the third star with a period of 188 days. A campaign of follow-up ground-based photometry was able to capture the subsequent pair of third-body events as well as two further 8-day eclipses. A combined photo-spectro-dynamical analysis then leads to the determination of many of the system parameters. The 8-day binary consists of a pair of M stars, while most of the system light is from a K star around which the pair of M stars orbits.

General information
State: Published
Organisations: National Space Institute, University of California at Berkeley, Hungarian Academy of Sciences, Massachusetts Institute of Technology, Raemor Vista Observatory, Harvard-Smithsonian Center for Astrophysics, California Institute of Technology, Perth Exoplanet Survey Telescope, NASA Goddard Space Flight Center, Ruhr-Universität Bochum, University of Texas at Austin
Pages: 1934–1951
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Monthly Notices of the Royal Astronomical Society
Volume: 483
Issue number: 2
ISSN (Print): 0035-8711
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.54 SJR 2.346 SNIP 0.904
Web of Science (2017): Impact factor 5.194
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.09 SJR 2.388 SNIP 1.134
Web of Science (2016): Impact factor 4.961
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4 SJR 2.701 SNIP 1.165
Web of Science (2015): Impact factor 4.952
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.79 SJR 3.23 SNIP 1.322
Web of Science (2014): Impact factor 5.107
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.1 SJR 3.155 SNIP 1.23
Web of Science (2013): Impact factor 5.226
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2

SPT0346-52 is one of the most luminous and intensely star-forming galaxies in the universe, with and . In this paper, we present ALMA observations of the 158 μm emission line in this z = 5.7 dusty star-forming galaxy. We use a pixellated lensing reconstruction code to spatially and kinematically resolve the source-plane and rest-frame 158 μm dust continuum structure at ~700 pc (~012) resolution. We discuss the deficit with a pixellated study of the L [C ii]/L FIR ratio in the source plane. We find that individual pixels within the galaxy follow the same trend found using unresolved observations of other galaxies, indicating that the deficit arises on scales 700 pc. The lensing reconstruction reveals two spatially and kinematically separated components (~1 kpc and ~500 km s−1 apart) connected by a bridge of gas. Both components are found to be globally unstable, with Toomre Q instability parameters everywhere. We argue that SPT0346-52 is undergoing a major merger, which is likely driving the intense and compact star formation.
TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844

Data from the newly commissioned Transiting Exoplanet Survey Satellite has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of $1.303\pm 0.022R_\oplus$ and orbits the star every 11 hr. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough ($I = 11.9, K = 9.1$) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Aarhus University
Number of pages: 9
Publication date: 2019
Peer-reviewed: Yes

Publication information
Volume: 871
Issue number: 2
Article number: L24
ISSN (Print): 0004-637X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.41
Web of Science (2017): Impact factor 8.561
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.26
Web of Science (2016): Impact factor 8.955
We present the physical properties of EPIC 245932119 (Kp = +9.82) exhibiting both eclipses and pulsations from the K2 photometry. The binary modeling indicates that the eclipsing system is in detached or semi-detached configurations with a mass ratio of 0.283 or 0.245, respectively, and that its light-curve parameters are almost unaffected by pulsations. Multiple frequency analyses were performed for the light residuals in the outside-primary eclipsing phase after subtracting the binarity effects from the observed data. We detected 35 frequencies with signal-to-noise amplitude ratios larger than 4.0 in two regions of 0.62-6.28 day\(^{-1}\) and 19.36-24.07 day\(^{-1}\). Among these, it is possible that some high signals close to the Nyquist limit f(Ny) may be reflections of real pulsation frequencies \(2f_\text{Ny} - f_i\). All frequencies (f\(_8\), f\(_9\), f\(_{14}\), f\(_{18}\), f\(_{24}\), f\(_{32}\)) in
the lower frequency region are orbital harmonics, and three high frequencies \((f_{19}, f_{20}, f_{22}) \) appear to be sidelobes split from the main frequency of \(f_i = 22.77503 \text{ day}^{-1} \). Most of them are thought to be alias effects caused by the orbital frequency. For the 26 other frequencies, the pulsation periods and pulsation constants are in the ranges of 0.041-0.052 days and 0.013-0.016 days, respectively. These values and the position in the Hertzsprung-Russell diagram reveal that the primary component is a delta Sct pulsator. The observational properties of EPIC 245932119 are in good agreement with those for eclipsing binaries with delta Sct-type pulsating components.

General information

State: Published

Organisations: National Space Institute, Korea University of Science and Technology, Chungbuk National University

Contributors: Lee, J. W., Hong, K., Kristiansen, M. H.

Number of pages: 8

Publication date: 2019

Peer-reviewed: Yes

Publication information

Journal: Astrophysical Journal

Volume: 157

Issue number: 1

Article number: 17

ISSN (Print): 0004-637X

Ratings:

BFI (2019): BFI-level 2

Web of Science (2019): Indexed yes

BFI (2018): BFI-level 2

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 2

Scopus rating (2017): CiteScore 4.41

Web of Science (2017): Impact factor 8.561

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 2

Scopus rating (2016): CiteScore 5.26

Web of Science (2016): Impact factor 8.955

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 2

Scopus rating (2015): CiteScore 4.8

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 2

Scopus rating (2014): CiteScore 4.57

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 2

Scopus rating (2013): CiteScore 4.85

Web of Science (2013): Impact factor 14.137

ISI indexed (2013): ISI indexed yes

Web of Science (2013): Indexed yes

BFI (2012): BFI-level 2

Scopus rating (2012): CiteScore 5.51

Web of Science (2012): Impact factor 16.238

ISI indexed (2012): ISI indexed yes

Web of Science (2012): Indexed yes

BFI (2011): BFI-level 2

Scopus rating (2011): CiteScore 5.46

ISI indexed (2011): ISI indexed yes

BFI (2010): BFI-level 2
Time-dependent low-latitude core flow and geomagnetic field acceleration pulses

We present a new model of time-dependent flow at low latitudes in the Earth’s core between 2000 and 2018 derived from magnetic field measurements made on board the Swarm and CHAMP satellites and at ground magnetic observatories. The model, called CoreFlo-LL.1, consists of a steady background flow without imposed symmetry plus a time-dependent flow that is dominated by geostrophic and quasi-geostrophic components but also allows weak departures from equatorial symmetry. Core flow mode amplitudes are determined at 4-month intervals by a robust least-squares fit to ground and satellite secular variation data. The l_1 norm of the square root of geostrophic and inertial mode enstrophies, and the l_2 norm of the flow acceleration, are minimized during the inversion procedure. We find that the equatorially region beneath the core–mantle boundary is a place of vigorous, localized, fluid motions; time-dependent flow focused at low latitudes close to the core surface is able to reproduce rapid field variations observed at non-polar latitudes at and above Earth’s surface. Magnetic field acceleration pulses are produced by alternating bursts of non-zonal azimuthal flow acceleration in this region. Such bursts are prominent in the longitudinal sectors from 80–130°E and 60–100°W throughout the period studied, but are also evident under the equatorial Pacific from 130°E to 150°W after 2012. We find a distinctive interannual alternation in the sign of the non-zonal azimuthal flow acceleration at some locations involving a rapid crossover between flow acceleration convergence and divergence. Such acceleration sign changes can occur within a year or less and, when the structures involved are of large spatial extent, they can give rise to geomagnetic jerks at the Earth’s surface. For example, in 2014, we find a change in the sign of the non-zonal azimuthal flow acceleration under the equatorial Pacific as a region of flow acceleration divergence near 130°E changes to a region of flow acceleration convergence. This occurs at a maximum in the amplitude of the time-varying azimuthal flow under the equatorial Pacific and corresponds to a geomagnetic jerk at the Earth’s surface.
Time-predictable synchronization support with a shared scratchpad memory

Multicore processors need to communicate when working on shared tasks. In classical systems, this is performed via shared objects protected by locks, which are implemented with atomic operations on the main memory. However, access to shared main memory is already a bottleneck for multicore processors. Furthermore, the access time to a shared memory is often hard to predict and therefore problematic for real-time systems. This paper presents a shared on-chip memory that is used for communication and supports atomic operations to implement locks. Access to the shared memory is arbitrated with time division multiplexing, providing time-predictable access. The shared memory supports extended time slots so that a processor can execute more than one memory operation atomically. This allows for the implementation of locking and other synchronization primitives. We evaluate this shared scratchpad memory with synchronization support on a 9-core version of the T-CREST multicore platform. Worst-case access latency to the shared scratchpad is 13 clock cycles. Access to the atomic section under full contention, when every processor core wants access to acquire a lock, is 135 clock cycles.
We introduce the OSI-450, the SICCI-25km and the SICCI-50km climate data records of gridded global sea-ice concentration. These three records are derived from passive microwave satellite data and offer three distinct advantages compared to existing records: first, all three records provide quantitative information on uncertainty and possibly applied filtering at every grid point and every time step. Second, they are based on dynamic tiepoints, which capture the time evolution of surface characteristics of the ice cover and accommodate potential calibration differences between satellite missions. Third, they are produced in the context of sustained services offering committed extension, documentation, traceability, and user support. The three records differ in the underlying satellite data (SMMR & SSM/I & SSMIS or AMSR-E & AMSR2), in the imaging frequency channels (37 GHz and either 6 or 19 GHz), in their horizontal resolution (25 or 50 km), and in the time period they cover. We introduce the underlying algorithms and provide an evaluation. We find that all three records compare well with independent estimates of sea-ice concentration both in regions with very high sea-ice concentration and in regions with very low sea-ice concentration. We hence trust that these records will prove helpful for a better understanding of the evolution of the Earth's sea-ice cover.