275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10

Since 2014, NASA’s K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here 275 planet candidates observed during Campaigns 0–10 of the K2 mission that are orbiting stars brighter than 13 mag (in Kepler band) and for which we have obtained high-resolution spectra (R = 44,000). These candidates are analyzed using the vespa package in order to calculate their false-positive probabilities (FPP). We find that 149 candidates are validated with an FPP lower than 0.1%, 39 of which were previously only candidates and 56 of which were previously undetected. The processes of data reduction, candidate identification, and statistical validation are described, and the demographics of the candidates and newly validated planets are explored. We show tentative evidence of a gap in the planet radius distribution of our candidate sample. Comparing our sample to the Kepler candidate sample investigated by Fulton et al., we conclude that more planets are required to quantitatively confirm the gap with K2 candidates or validated planets. This work, in addition to increasing the population of validated K2 planets by nearly 50% and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite, expected to launch in 2018.
A 3D particle Monte Carlo approach to studying nucleation

The nucleation of sulphuric acid molecules plays a key role in the formation of aerosols. We here present a three-dimensional particle Monte Carlo model to study the growth of sulphuric acid clusters as well as its dependence on the ambient temperature and the initial particle density. We initiate a swarm of sulphuric acid–water clusters with a size of 0.329 nm with densities between 10^7 and 10^8 cm$^{-3}$ at temperatures between 200 and 300 K and a relative humidity...
of 50%. After every time step, we update the position of particles as a function of size-dependent diffusion coefficients. If two particles encounter, we merge them and add their volumes and masses. Inversely, we check after every time step whether a polymer evaporates liberating a molecule. We present the spatial distribution as well as the size distribution calculated from individual clusters. We also calculate the nucleation rate of clusters with a radius of 0.85 nm as a function of time, initial particle density and temperature. The nucleation rates obtained from the presented model agree well with experimentally obtained values and those of a numerical model which serves as a benchmark of our code. In contrast to previous nucleation models, we here present for the first time a code capable of tracing individual particles and thus of capturing the physics related to the discrete nature of particles.
A benchmark study of numerical implementations of the sea-level equation in GIA modelling

The ocean load in glacial isostatic adjustment (GIA) modelling is represented by the so-called sea-level equation (SLE). The SLE describes the mass redistribution of water between ice sheets and oceans on a deforming Earth. Despite various teams independently investigating GIA, there has been no systematic intercomparison amongst the numerical solvers of the SLE through which the methods may be validated. The goal of this paper is to present a series of synthetic examples designed for testing and comparing the numerical implementations of the SLE in GIA modelling. The ten numerical codes tested combine various temporal and spatial parameterizations. The time-domain or Laplace-domain discretizations are used to solve the SLE through time, while spherical harmonics, finite differences or finite elements parameterize the GIA-related field variables spatially. The surface ice-water load and solid Earth’s topography are represented spatially either on an equi-angular grid, a Gauss-Legendre or an equi-area grid with icosahedron-shaped spherical pixels. Comparisons are made in a series of five benchmark examples with an increasing degree of complexity. Due to the complexity of the SLE, there is no analytical solution to it. The accuracy of the numerical implementations is therefore assessed by the differences of the individual solutions with respect to a reference solution. While the benchmark study does not result in GIA predictions for a realistic loading scenario, we establish a set of agreed-upon results that can be extended in the future by including more complex case studies, such as solutions with realistic loading scenarios, the rotational feedback in the linear-momentum equation, and by considering a three-dimensional viscosity structure of the Earth’s mantle. The test computations performed so far show very good agreement between the individual results and their ability to capture the main features of sea-surface variation and the surface vertical displacement. The differences found can often be attributed to the different approximations inherent in the various algorithms. This shows the accuracy that can be expected from different implementations of the SLE, which helps to assess differences noted in the literature between predictions for realistic loading cases.

Bibliographical note
©2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/).
Source: FindIt
Source-ID: 2396722595
Research output: Research - peer-review › Journal article – Annual report year: 2018
A Compact Multi-planet System with a Significantly Misaligned Ultra Short Period Planet

We report the discovery of a compact multi-planet system orbiting the relatively nearby (78 pc) and bright (K = 8.9) K-star, K2-266 (EPIC 248435473). We identify up to six possible planets orbiting K2-266 with estimated periods of $P_b = 0.66$, $P_c = 6.1$, $P_d = 14.7$, $P_e = 19.5$, and $P_{06} = 56.7$ days, and radii of $R_P = 3.3 R_{\oplus}$, $0.646 R_{\oplus}$, $0.705 R_{\oplus}$, $2.93 R_{\oplus}$, and $0.90 R_{\oplus}$, respectively. We are able to confirm the planetary nature of two of these planets (d and e) by analyzing their transit timing variations ($m_d = 8.9 M_{\oplus}$ and $m_e = 14.3 M_{\oplus}$) confidently validate the planetary nature of two other planets (b and c), and classify the last two as planetary candidates (K2-266.02 and .06).

From a simultaneous fit of all six possible planets, we find that K2-266 b's orbit has an inclination of 75° while the other five planets have inclinations of 87°–90°. This observed mutual misalignment may indicate that K2-266 b formed differently from the other planets in the system. The brightness of the host star and the relatively large size of the sub-Neptune sized planets d and e make them well-suited for atmospheric characterization efforts with facilities like the Hubble Space Telescope and upcoming James Webb Space Telescope. We also identify an 8.5 day transiting planet candidate orbiting EPIC 248435395, a co-moving companion to K2-266.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Harvard-Smithsonian Center for Astrophysics, University of Michigan, University of Texas, University of California at Berkeley, NASA Goddard Space Flight Center, California Institute of Technology, Massachusetts Institute of Technology, Vanderbilt University
Number of pages: 20
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astrophysical Journal
Volume: 156
A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field

The Juno spacecraft, which is in a polar orbit around Jupiter, is providing direct measurements of the planet’s magnetic field close to its surface. A recent analysis of observations of Jupiter’s magnetic field from eight (of the first nine) Juno orbits has provided a spherical-harmonic reference model (JRM09) of Jupiter’s magnetic field outside the planet. This model is of particular interest for understanding processes in Jupiter’s magnetosphere, but to study the field within the planet and thus the dynamo mechanism that is responsible for generating Jupiter’s main magnetic field, alternative models are preferred. Here we report maps of the magnetic field at a range of depths within Jupiter. We find that Jupiter’s magnetic field is different from all other known planetary magnetic fields. Within Jupiter, most of the flux emerges from the dynamo region in a narrow band in the northern hemisphere, some of which returns through an intense, isolated flux patch near the equator. Elsewhere, the field is much weaker. The non-dipolar part of the field is confined almost entirely to the northern hemisphere, so there the field is strongly non-dipolar and in the southern hemisphere it is predominantly dipolar. We suggest that Jupiter’s dynamo, unlike Earth’s, does not operate in a thick, homogeneous shell, and we propose that this unexpected field morphology arises from radial variations, possibly including layering, in density or electrical conductivity, or both.

General information
State: Published
Organisations: National Space Institute, Measurement and Instrumentation Systems, Harvard University, NASA Goddard Space Flight Center, California Institute of Technology, Southwest Technology and Engineering Research Institute
Pages: 76-78
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Nature
Volume: 561
Issue number: 7721
ISSN (Print): 1476-4687
Ratings:
BFI (2018): BFI-level 3
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.59
Web of Science (2017): Impact factor 19.181
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.33
Web of Science (2016): Impact factor 19.304
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 14.38
Web of Science (2015): Impact factor 17.184
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 14.22
Web of Science (2014): Impact factor 14.547
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 14.96
Web of Science (2013): Impact factor 15.295
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
A comprehensive model of Earth's magnetic field determined from 4 years of Swarm satellite observations

The European Space Agency’s three-satellite constellation Swarm, launched in November 2013, has provided unprecedented monitoring of Earth’s magnetic field via a unique set of gradiometric and multi-satellite measurements from low Earth orbit. In order to exploit these measurements, an advanced “comprehensive inversion” (CI) algorithm has been developed to optimally separate the various major magnetic field sources in the near-Earth regime. The CI algorithm is used to determine Swarm Level-2 (L2) magnetic field data products that include the core, lithospheric, ionospheric, magnetospheric, and associated induced sources. In addition, it has become apparent that the CI is capable of extracting the magnetic signal associated with the oceanic principal lunar semidiurnal tidal constituent M2 to such an extent that it has been added to the L2 data product line. This paper presents the parent model of the Swarm L2 CI products derived with measurements from the first 4 years of the Swarm mission and from ground observatories, denoted as “CIY4,” including the new product describing the magnetic signal of the M2 oceanic tide.

General information
State: Published
Organisations: National Space Institute, Geomagnetism, NASA Goddard Space Flight Center
Contributors: Sabaka, T. J., Tøffner-Clausen, L., Olsen, N., Finlay, C. C.
Number of pages: 26
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Earth, Planets and Space
Volume: 70
Issue number: 1
Article number: 130
ISSN (Print): 1343-8832
Ratings:
BFI (2018): BFI-level 1
A curious case of the accretion-powered X-ray pulsar GX 1+4

We present detailed spectral and timing studies using a NuSTAR observation of GX 1+4 in 2015 October during an intermediate-intensity state. The measured spin period of 176.778 s is found to be one of the highest values since its discovery. In contrast to a broad sinusoidal-like pulse profile, a peculiar sharp peak is observed in profiles below ∼25 keV. The profiles at higher energies are found to be significantly phase shifted compared to the soft X-ray profiles. Broad-band energy spectra of GX 1+4, obtained from NuSTAR and Swift observations, are described with various continuum models. Among these, a two-component model consisting of a bremsstrahlung and a blackbody component is found to best fit the phase-averaged and phase-resolved spectra. Physical models are also used to investigate the emission mechanism in the pulsar, which allows us to estimate the magnetic field strength to be in ∼(5–10) × 10¹² G range. Phase-resolved spectroscopy of NuSTAR observation shows a strong blackbody emission component in a narrow pulse phase range. This component is interpreted as the origin of the peculiar peak in the pulse profiles below ≤25 keV. The size of emitting region is calculated to be ∼400 m. The bremsstrahlung component is found to dominate in hard X-rays and explains the nature of simple profiles at high energies.
A deep X-ray view of the bare AGN Ark120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes.

Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the FeKα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH.

Aims. We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark120, in order to determine the process(es) at work in the vicinity of the SMBH.

Methods. We present spectral analyses of data from an extensive campaign observing Ark120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18–24), and NuSTAR (65.5 ks, 2014 March 22).

Results. During this very deep X-
ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the “softer when brighter” behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3–79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum.

Conclusions. During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below ~0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe ~ 0.5 keV), optically-thick corona (τ ~ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Université de Strasbourg, National Institute for Astrophysics, Keele University, Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, California Institute of Technology, Università Roma Tre, Georgia Institute of Technology, University of California at Berkeley, Virginia Polytechnic Institute and State University, Columbia University, Jet Propulsion Laboratory, California Institute of Technology, NASA Goddard Space Flight Center
Number of pages: 16
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astronomy & Astrophysics
Volume: 609
Article number: A42
ISSN (Print): 0004-6361
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68 SJR 2.234 SNIP 1.199
Web of Science (2016): Impact factor 5.014
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.5 SJR 2.545 SNIP 1.224
Web of Science (2015): Impact factor 5.185
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.82 SJR 2.883 SNIP 1.247
Web of Science (2014): Impact factor 4.378
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.01 SJR 2.747 SNIP 1.159
Web of Science (2013): Impact factor 4.479
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.14 SJR 2.903 SNIP 1.36
Web of Science (2012): Impact factor 5.084
ISI indexed (2012): ISI indexed yes
A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization

A key legacy of the recently launched the Transiting Exoplanet Survey Satellite (TESS) mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. The James Webb Space Telescope (JWST), although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) require the discovery and confirmation of several hundred additional sub-Jovian size planets ($R_p < 10 R_⊕$) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based extremely large telescopes (ELTs) will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al., we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of \sim300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds.
A NICER Look at the Aql X-1 Hard State
We report on a spectral-timing analysis of the neutron star low-mass X-ray binary (LMXB) Aql X-1 with the Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS). Aql X-1 was observed with NICER during a dim outburst in 2017 July, collecting approximately 50 ks of good exposure. The spectral and timing properties of the source correspond to that of a (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low-frequency (<0.3 Hz) band-limited noise shows a dramatic turnover as a function of energy: it peaks at 0.5 keV with nearly 25% rms, drops to 12% rms at 2 keV, and rises to 15% rms at 10 keV. Through the analysis of covariance spectra, we demonstrate that band-limited noise exists in both the soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at 0.5 keV leads the power-law emission at 10 keV on a timescale of ~100 ms at 0.3 Hz to ~10 ms at 3 Hz. Our results demonstrate that the thermal emission in the hard state is intrinsically variable, and is driving the modulation of the higher energy power-law. Interpreting the thermal spectrum as disk emission, we find that our results are consistent with the disk propagation model proposed for accretion onto black holes.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, NASA Goddard Space Flight Center, Wayne State University, Massachusetts Institute of Technology, University of Amsterdam, Universite de Toulouse, SRON Netherlands Institute for Space Research, University of Maryland, University of Illinois at Urbana-Champaign, University of Michigan
Number of pages: 6
Publication date: 2018
Peer-reviewed: Yes

Publication information
Volume: 859
Issue number: 1
Article number: L1
ISSN (Print): 2041-8205
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.07
Web of Science (2017): Impact factor 6.634
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.45
Web of Science (2016): Impact factor 5.522
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 4.33
Web of Science (2015): Impact factor 5.487
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 4.34
Web of Science (2014): Indexed yes
ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans, because sea level can only be estimated in the openings in the sea ice (leads and polynyas). Similar signal-related problems affect also measurements in coastal and inland waters.

This study presents a fitting (also called retracking) strategy (ALES+) based on a subwaveform retracker that is able to adapt the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions.

The validation in a test area of the Arctic Ocean demonstrates that the presented strategy is more precise than the dedicated ocean and sea ice retrackers available in the mission products. It decreases the retracking open ocean noise by over 1cm with respect to the standard ocean retracker and is more precise by over 1cm with respect to the standard sea ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also the quality of coastal retrievals increases compared to the standard ocean product in the last 6km within the coast.

ALES+ improves the sea level determination at high latitudes and is adapted to fit reflections from any water surface. If used in the open ocean and in the coastal zone, it improves the current official products based on ocean retrackers. First results in the inland waters show that the correlation between water heights from ALES+ and from in-situ measurement is always over 0.95.

General information
State: Published
Organisations: National Space Institute, Geodesy, Technische Universität München, National Oceanography Centre Liverpool, ESRIN - ESA Centre for Earth Observation
Contributors: Passaro, M., Kildegaard Rose, S., Andersen, O. B., Boergens, E., Calafat, F. M., Dettmering, D., Benveniste, J.
Pages: 456-471
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing of Environment
Volume: 211
ISSN (Print): 0034-4257
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.16 SJR 3.121 SNIP 2.5
Web of Science (2017): Impact factor 6.457
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.92 SJR 3.035 SNIP 2.956
Web of Science (2016): Impact factor 6.265
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.27 SJR 3.697 SNIP 3.044
Web of Science (2015): Impact factor 5.881
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.21 SJR 3.881 SNIP 3.477
Web of Science (2014): Impact factor 6.393
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.6 SJR 3.148 SNIP 2.982
Web of Science (2013): Impact factor 4.769
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.99 SJR 3.449 SNIP 3.663
Web of Science (2012): Impact factor 5.103
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.72 SJR 3.438 SNIP 3.088
Web of Science (2011): Impact factor 4.574
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.786 SNIP 2.789
Web of Science (2010): Impact factor 3.954
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.443 SNIP 2.486
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.29 SNIP 3.093
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.911 SNIP 2.986
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.322 SNIP 2.766
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.616 SNIP 3.257
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 3.295 SNIP 3.16
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.7 SNIP 2.892
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.171 SNIP 2.727
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.651 SNIP 2.092
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.046 SNIP 1.959
Scopus rating (1999): SJR 1.105 SNIP 1.494
A new global GPS data set for testing and improving modelled GIA uplift rates

Glacial isostatic adjustment (GIA) is the response of the solid Earth to past ice loading, primarily, since the Last Glacial Maximum, about 20 K yr BP. Modelling GIA is challenging because of large uncertainties in ice loading history and also the viscosity of the upper and lower mantle. GPS data contain the signature of GIA in their uplift rates but these also contain other sources of vertical land motion (VLM) such as tectonics, human and natural influences on water storage that can mask the underlying GIA signal. In this study, we use about 4000 GPS vertical velocities as observational estimates of global GIA uplift rates, after correcting for major elastic deformation effects. A novel fully automatic strategy is developed to postprocess the GPS time-series and to correct for non-GIA artefacts. Before estimating vertical velocities and uncertainties, we detect outliers and jumps and correct for atmospheric massloading displacements. We correct the resulting velocities for the elastic response of the solid Earth to global changes in ice sheets, glaciers and ocean loading, as well as for changes in the Earth’s rotational pole relative to the 20th century average. We then apply a spatial median filter to remove sites where local effects are dominant to leave approximately 4000 GPS sites. The resulting novel global GPS data set shows a clean GIA signal at all post-processed stations and is therefore suitable to investigate the behavior of global GIA forward models. The results are transformed from a frame with its origin in the centre of mass of the total Earth’s system (CM) into a frame with its origin in the centre of mass of the solid Earth (CE) before comparison with 13 global GIA forward model solutions, with best fits with Pur-6-VM5 and ICE-6G predictions. The largest discrepancies for all models were identified for Antarctica and Greenland, which may be due to either uncertain mantle rheology, ice loading history/magnitude and/or GPS errors.
A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits

A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of ~45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.

General information
State: Published
Organisations: National Space Institute, Measurement and Instrumentation Systems, NASA Goddard Space Flight Center, Harvard University, Southwest Research Institute, NASA Jet Propulsion Laboratory
Pages: 2590-2596
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Geophysical Research Letters
Volume: 45
Issue number: 6
ISSN (Print): 0094-8276
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.51 SJR 2.657 SNIP 1.429
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.35 SJR 2.819 SNIP 1.495
Web of Science (2016): Impact factor 4.253
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.27 SJR 3.144 SNIP 1.496
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.26 SJR 3.135 SNIP 1.552
Web of Science (2014): Impact factor 4.196
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.45 SJR 3.24 SNIP 1.728
Web of Science (2013): Impact factor 4.456
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.82 SJR 3.122 SNIP 1.577
Web of Science (2012): Impact factor 3.982
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.79 SJR 2.935 SNIP 1.556
Web of Science (2011): Impact factor 3.792
ISI indexed (2011): ISI indexed yes
A new tracking algorithm for sea ice age distribution estimation

A new algorithm for estimating sea ice age (SIA) distribution based on the Eulerian advection scheme is presented. The advection scheme accounts for the observed divergence or convergence and freezing or melting of sea ice and predicts consequent generation or loss of new ice. The algorithm uses daily gridded sea ice drift and sea ice concentration products from the Ocean and Sea Ice Satellite Application Facility. The major advantage of the new algorithm is the ability to generate individual ice age fractions in each pixel of the output product or, in other words, to provide a frequency distribution of the ice age allowing to apply mean, median, weighted average or other statistical measures. Comparison with the National Snow and Ice Data Center SIA product revealed several improvements of the new SIA maps and time series. First, the application of the Eulerian scheme provides smooth distribution of the ice age parameters and prevents product undersampling which may occur when a Lagrangian tracking approach is used. Second, utilization of the new sea ice drift product void of artifacts from EUMETSAT OSI SAF resulted in more accurate and reliable spatial distribution of ice age fractions. Third, constraining SIA computations by the observed sea ice concentration expectedly led to considerable reduction of multi-year ice (MYI) fractions. MYI concentration is computed as a sum of all MYI fractions and compares well to the MYI products based on passive and active microwave and SAR products.

General information
An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

Sea level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea level has been listed as an essential climate variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter standards were selected to produce new sea level products (called SL_cci v2.0) based on nine altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612; Legeais and the ESA SL_cci team, 2016c). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in detail in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared with the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties on different spatial and temporal scales. However, there is still room for improvement since the uncertainties remain larger than the GCOS requirements (GCOS, 2011). Perspectives on subsequent evolution are also discussed.

General information
State: Published
Organisations: National Space Institute, Geodesy, Nansen Environmental and Remote Sensing Center, University of Hamburg, Collecte Localisation Satellites, European Centre for Medium-Range Weather Forecasts, University of Bonn, University of Porto, Technische Universität München, Laboratoire d’Études en Géophysique et Océanographie Spatiales, ESRIN - ESA Centre for Earth Observation, Plymouth Marine Laboratory, National Oceanography Centre
Pages: 281-301
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Earth System Science Data
Volume: 10
Issue number: 1
ISSN (Print): 1866-3508
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 8.18 SJR 4.885 SNIP 2.62
Web of Science (2017): Impact factor 8.792
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 7.28 SJR 4.928 SNIP 2.545
Web of Science (2016): Impact factor 6.966
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 7.07 SJR 5.369 SNIP 3.072
Web of Science (2015): Impact factor 8.286
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 6.19 SJR 4.718 SNIP 2.679
An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141

Ultra-short period (USP) planets are a class of low-mass planets with periods shorter than one day. Their origin is still unknown, with photo-evaporation of mini-Neptunes and in situ formation being the most credited hypotheses. Formation scenarios differ radically in the predicted composition of USP planets, and it is therefore extremely important to increase the still limited sample of USP planets with precise and accurate mass and density measurements. We report here the characterization of a USP planet with a period of 0.28 days around K2-141 (EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration. We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with the HARPS-N spectrograph for mass measurements. For K2-141b, we thus inferred a radius of 1.51 ± 0.05 R⊕ and a mass of 5.08 ± 0.41 M ⊕, consistent with a rocky composition and lack of a thick atmosphere. K2-141c is likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV data set, we were not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of 0.30 ± 0.06 in the Kepler bandpass, or by thermal emission from the surface of the planet at ~3000 K. Only follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of St Andrews, University of Warwick, University of Cambridge, National Institute for Astrophysics, Harvard-Smithsonian Center for Astrophysics, University of California, California Institute of Technology, Massachusetts Institute of Technology, University of California at Berkeley, National Optical Astronomy Observatory, University of Porto, University of California at Santa Cruz, Queen's University Belfast, University of Edinburgh, NASA Ames Research Center
Number of pages: 13
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astrophysical Journal
Volume: 155
Issue number: 3
Article number: 107
ISSN (Print): 0004-637X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.41
Web of Science (2017): Impact factor 8.561
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.26
Arctic Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance

Assimilation of remote-sensing products of sea ice thickness (SIT) into sea ice-ocean models has been shown to improve the quality of sea ice forecasts. Key open questions are whether assimilation of lower-level data products such as radar freeboard (RFB) can further improve model performance and what performance gains can be achieved through joint assimilation of these data products in combination with a snow depth product. The Arctic Mission Benefit Analysis system was developed to address this type of question. Using the quantitative network design (QND) approach, the system can evaluate, in a mathematically rigorous fashion, the observational constraints imposed by individual and groups of data products. We demonstrate the approach by presenting assessments of the observation impact (added value) of different
Earth observation (EO) products in terms of the uncertainty reduction in a 4-week forecast of sea ice volume (SIV) and snow volume (SNV) for three regions along the Northern Sea Route in May 2015 using a coupled model of the sea ice-ocean system, specifically the Max Planck Institute Ocean Model. We assess seven satellite products: three real products and four hypothetical products. The real products are monthly SIT, sea ice freeboard (SIFB), and RFB, all derived from CryoSat-2 by the Alfred Wegener Institute. These are complemented by two hypothetical monthly laser free-board (LFB) products with low and high accuracy, as well as two hypothetical monthly snow depth products with low and high accuracy. On the basis of the per-pixel uncertainty ranges provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT and RFB achieve a much better performance for SIV than the SIFB product. For SNV, the performance of SIT is only low, the performance of SIFB is higher and the performance of RFB is yet higher. A hypothetical LFB product with low accuracy (20 cm uncertainty) falls between SIFB and RFB in performance for both SIV and SNV. A reduction in the uncertainty of the LFB product to 2 cm yields a significant increase in performance. Combining either of the SIT or freeboard products with a hypothetical snow depth product achieves a significant performance increase. The uncertainty in the snow product matters: a higher-accuracy product achieves an extra performance gain. Providing spatial and temporal uncertainty correlations with the EO products would be beneficial not only for QND assessments, but also for assimilation of the products.
Arctic Sea Ice Characterization Using Spaceborne Fully Polarimetric L-, C-, and X-Band SAR With Validation by Airborne Measurements

In recent years, spaceborne synthetic aperture radar (SAR) polarimetry has become a valuable tool for sea ice analysis. Here, we employ an automatic sea ice classification algorithm on two sets of spatially and temporally near coincident fully polarimetric acquisitions from the ALOS-2, Radarsat-2, and TerraSAR-X/TanDEM-X satellites. Overlapping coincident sea ice freeboard measurements from airborne laser scanner data are used to validate the classification results. The automated sea ice classification algorithm consists of two steps. In the first step, we perform a polarimetric feature extraction procedure. Next, the resulting feature vectors are ingested into a trained neural network classifier to arrive at a pixelwise supervised classification. Coherency matrix-based features that require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix-based features, which makes coherency matrix-based features dispensable for the purpose of sea ice classification. Among the most useful features for classification are matrix invariant-based features (geometric intensity, scattering diversity, and surface scattering fraction). Classification results show that 100% of the open water is separated from the surrounding sea ice and that the sea ice classes have at least 96.9% accuracy. This analysis reveals analogous results for both X-band and C-band frequencies and slightly different for the L-band. The subsequent classification produces similarly promising results for all four acquisitions. In particular, the overlapping image portions exhibit a reasonable congruence of detected sea ice when compared with high-resolution airborne measurements.
Web of Science (2017): Impact factor 4.662
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.45 SJR 2.616 SNIP 3.184
Web of Science (2016): Impact factor 4.942
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.7 SJR 2.486 SNIP 3.107
Web of Science (2015): Impact factor 3.36
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.71 SJR 2.445 SNIP 3.459
Web of Science (2014): Impact factor 3.514
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.22 SJR 2.283 SNIP 3.227
Web of Science (2013): Impact factor 2.933
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.26 SJR 2.337 SNIP 3.833
Web of Science (2012): Impact factor 3.467
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.85 SJR 2.249 SNIP 2.988
Web of Science (2011): Impact factor 2.895
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.14 SNIP 2.932
Web of Science (2010): Impact factor 2.485
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.85 SNIP 2.964
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.77 SNIP 3.084
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.657 SNIP 3.67
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.137 SNIP 2.821
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.957 SNIP 2.932
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.2 SNIP 3.208
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2 SNIP 3.412
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.075 SNIP 3.302
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.113 SNIP 1.934
Web of Science (2001): Indexed yes
Arctic2017, a high-resolution regional tidal model in the Arctic Ocean

The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products.

NOVELTIS, DTU Space and LEGOS have developed Arctic2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and CryoSat-2 data between 82°N and 88°N. The combination of these satellite altimetry missions gives the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data were also used for data assimilation and validation.

This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models.

General information
State: Published
Organisations: National Space Institute, Geodesy, Noveltis, Laboratoire d’Études en Géophysique et Océanographie Spatiales, Satellite Oceanographic Consultants, ESRIN - ESA Centre for Earth Observation
Contributors: Cancet, M., Andersen, O. B., Lyard, F., Cotton, D., Benveniste, J.
Pages: 1324-1343
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Advances in Space Research
Volume: 62
Issue number: 6
ISSN (Print): 0273-1177
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.63 SJR 0.569 SNIP 1.067
Web of Science (2017): Impact factor 1.529
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.63 SJR 0.575 SNIP 1.196
Web of Science (2016): Impact factor 1.401
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.61 SJR 0.584 SNIP 1.322
Web of Science (2015): Impact factor 1.409
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.61 SJR 0.709 SNIP 1.271
Web of Science (2014): Impact factor 1.358
BFI (2013): BFI-level 1
Assimilation of ground and satellite magnetic measurements: inference of core surface magnetic and velocity field changes

We jointly invert for magnetic and velocity fields at the core surface over the period 1997–2017, directly using ground-based observatory time-series and measurements from the CHAMP and Swarm satellites. Satellite data are reduced to the form of virtual observatory time-series distributed on a regular grid in space. Such a sequential storage helps incorporate voluminous modern magnetic data into a stochastic Kalman filter, whereby spatial constraints are incorporated based on a norm derived from statistics of a numerical geodynamo model. Our algorithm produces consistent solutions both in terms of the misfit to the data and the estimated posterior model uncertainties. We retrieve core flow features previously documented from the analysis of spherical harmonic field models, such as the eccentric anticyclonic gyre. We find enhanced diffusion patterns under both Indonesia and Africa. In contrast to a steady flow that is strong under the Atlantic hemisphere but very weak below the Pacific, interannual motions appear evenly distributed over the two hemispheres. Recovered interannual to decadal flow changes are predominantly symmetrical with respect to the equator outside the tangent cylinder. In contrast, under the Northern Pacific we find an intensification of a high latitude jet, but see no evidence for a corresponding feature in the Southern hemisphere. The largest flow accelerations that we isolate over the studied era are associated with meanders, attached to the equatorward meridional branch of the planetary gyre in the Eastern hemisphere, that are linked to the appearance of an eastward equatorial jet below the Western Pacific.
General information
State: Published
Organisations: National Space Institute, Geomagnetism, University of Grenoble
Contributors: Barrois, O., Hammer, M. D., Finlay, C. C., Martin, Y., Gillet, N.
Pages: 695-712
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Geophysical Journal International
Volume: 215
Issue number: 1
ISSN (Print): 0956-540X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.54 SJR 1.506 SNIP 1.195
Web of Science (2017): Impact factor 2.528
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.61 SJR 1.749 SNIP 1.465
Web of Science (2016): Impact factor 2.414
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.46 SJR 1.796 SNIP 1.354
Web of Science (2015): Impact factor 2.484
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.63 SJR 1.901 SNIP 1.473
Web of Science (2014): Impact factor 2.56
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.15 SJR 2.376 SNIP 1.677
Web of Science (2013): Impact factor 2.724
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.78 SJR 2.367 SNIP 1.43
Web of Science (2012): Impact factor 2.853
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.52 SJR 2.241 SNIP 1.248
Web of Science (2011): Impact factor 2.42
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.156 SNIP 1.389
Web of Science (2010): Impact factor 2.411
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.187 SNIP 1.512
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.243 SNIP 1.235
Automatic delineation of debris-covered glaciers using InSAR coherence derived from X-, C- and L-band radar data: A case study of Yazgyl Glacier

Despite their importance for mass-balance estimates and the progress in techniques based on optical and thermal satellite imagery, the mapping of debris-covered glacier boundaries remains a challenging task. Manual corrections hamper regular updates. In this study, we present an automatic approach to delineate glacier outlines using interferometrically derived synthetic aperture radar (InSAR) coherence, slope and morphological operations. InSAR coherence detects the temporally decorrelated surface (e.g. glacial extent) irrespective of its surface type and separates it from the highly coherent surrounding areas. We tested the impact of different processing settings, for example resolution, coherence window size and topographic phase removal, on the quality of the generated outlines. We found minor influence of the topographic phase, but a combination of strong multi-looking during interferogram generation and additional averaging during coherence estimation strongly deteriorated the coherence at the glacier edges. We analysed the performance of X-, C- and L-band radar data. The C-band Sentinel-1 data outlined the glacier boundary with the least misclassifications and a type II error of 0.47% compared with Global Land Ice Measurements from Space inventory data. Our study shows the potential of the Sentinel-1 mission together with our automatic processing chain to provide regular updates for land-terminating glaciers on a large scale.

General information
State: Published
Organisations: Geodesy, National Space Institute, Friedrich-Alexander University Erlangen-Nürnberg
Contributors: Lippl, S.; Vijay, S.; Braun, M.
Pages: 811-821
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Glaciology
Volume: 64
Issue number: 247
ISSN (Print): 0022-1430
Ratings:
Basal Settings Control Fast Ice Flow in the Recovery/Slessor/Bailey Region, East Antarctica

The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery–Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.

General information

State: Published
Organisations: National Space Institute, Geodynamics, Norwegian Polar Institute, British Antarctic Survey
Pages: 2706-2715
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Geophysical Research Letters
Volume: 45
Issue number: 6
ISSN (Print): 0094-8276
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.51 SJR 2.657 SNIP 1.429
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.35 SJR 2.819 SNIP 1.495
Web of Science (2016): Impact factor 4.253
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.27 SJR 3.144 SNIP 1.496
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.26 SJR 3.135 SNIP 1.552
Web of Science (2014): Impact factor 4.196
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.45 SJR 3.24 SNIP 1.728
Web of Science (2013): Impact factor 4.456
ISI indexed (2013): ISI indexed yes
CASTAway: An asteroid main belt tour and survey

CASTAway is a mission concept to explore our Solar System's main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space-based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide

©2018. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Source: FindIt
Source-ID: 2396815517
Research output: Research - peer-review; Letter – Annual report year: 2018
a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10–20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R = 30–100) spectrometer and visible context imager, a thermal (e.g. 6–16 µm) imager for use during the flybys, and modified star tracker cameras to detect small (~10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, while delivering a significant increase in knowledge of our Solar System.

General information
State: Published
Organisations: Measurement and Instrumentation Systems, National Space Institute, University of Oxford, Open University Milton Keynes, OHB-System AG, Cranfield University, Rutherford Appleton Laboratory, Universität der Bundeswehr München, University of Padova, Belgian Institute for Space Aeronomy, Instituto Astrofísico de Canarias, Max-Planck-Institut für Sonnen system forschung, University of Bern, Aix Marseille Universite, Observatoire de la Cote d'Azur, Massachusetts Institute of Technology, Royal Observatory, University of Copenhagen, Johns Hopkins Applied Physics Laboratory, Czech Academy of Sciences, PSL Research University, University of Helsinki, University of Manchester, Université de Toulouse, Cardiff University, Université de Bourgogne, Mineral and Lapidary Museum of Henderson County, Research Centre for Astronomy and Earth Sciences, CNR

Number of pages: 28
Pages: 1998-2025
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Advances in space research
Volume: 62
Issue number: 8
ISSN (Print): 0273-1177
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.63 SJR 0.569 SNIP 1.067
Web of Science (2017): Impact factor 1.529
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.63 SJR 0.575 SNIP 1.196
Web of Science (2016): Impact factor 1.401
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.61 SJR 0.584 SNIP 1.322
Web of Science (2015): Impact factor 1.409
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.61 SJR 0.709 SNIP 1.271
Web of Science (2014): Impact factor 1.358
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.56 SJR 0.657 SNIP 1.268
Web of Science (2013): Impact factor 1.238
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.2 SJR 0.575 SNIP 1.047
Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation

Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1,2,3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east-west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish.

General information

State: Published
Organisations: National Space Institute, Geodesy, Aarhus University, University of Copenhagen, Geological Survey of Denmark and Greenland, Danish Meteorological Institute, University of Zurich, University of California at Irvine
Pages: 48–52
Publication date: 2018
Peer-reviewed: Yes
Circum-Greenland, ice-thickness measurements collected during PROMICE airborne surveys in 2007, 2011 and 2015

The Greenland ice sheet has experienced an average mass loss of 142 ± 49 Gt/yr from 1992 to 2011 (Shepherd et al. 2012), making it a significant contributor to sea-level rise. Part of the ice-sheet mass loss is the result of increased dynamic response of outlet glaciers (Rignot et al. 2011). The ice discharge from outlet glaciers can be quantified by coincident measurements of ice velocity and ice thickness (Thomas et al. 2000; van den Broeke et al. 2016).

As part of the Programme for monitoring of the Greenland Ice Sheet (PROMICE; Ahlstrøm et al. 2008), three airborne surveys were carried out in 2007, 2011 and 2015, with the aim of measuring the changes in Greenland ice-sheet thicknesses. The purpose of the airborne surveys was to collect data to assess the dynamic mass loss of the Greenland ice sheet (Andersen et al. 2015). Here, we present these datasets of observations from ice-penetrating radar and airborne laser scanning, which, in combination, make us able to determine the ice thickness precisely. Surface-elevation changes between surveys are also presented, although we do not provide an in-depth scientific interpretation of these.

General information

State: Published
Organisations: National Space Institute, Geodynamics, Geodesy, Microwaves and Remote Sensing, Geological Survey of Denmark and Greenland
Contributors: Sørensen, L. S., Simonsen, S. B., Forsberg, R., Stenseng, L., Skourup, H., Kristensen, S. S., Colgan, W.
Pages: 79-82
Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway

Conventional (pulse-limited) altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Sea surface heights and tide-gauge sea level serve as each other's buddy check. However, in coastal areas, altimetry suffers from numerous effects, which degrade its quality. The Norwegian coast adds further challenges due to its complex coastline with many islands, mountains, and deep, narrow fjords. The European Space Agency CryoSat-2 satellite carries a synthetic aperture interferometric radar altimeter, which is able to observe sea level closer to the coast than conventional altimeters. In this study, we explore the potential of CryoSat-2 to provide valid observations in the Norwegian coastal zone. We do this by comparing time series of CryoSat-2 sea level anomalies with time series of in situ sea level at 22 tide gauges, where the CryoSat-2 sea level anomalies are averaged in a 45-km area around each tide gauge. For all tide gauges, CryoSat-2 shows standard deviations of differences and correlations of 16 cm and 61%, respectively. We further identify the ocean tide and inverted barometer geophysical corrections as the most crucial, and note that a large amount of observations at land-confined tide gauges are not assigned an ocean tide value. With the availability of local air pressure observations and ocean tide predictions, we substitute the standard inverted barometric and ocean tide corrections with local corrections. This gives an improvement of 24% (to 12.2 cm) and 12% (to 68%) in terms of standard deviations of differences and correlations, respectively. Finally, we perform the same in situ analysis using data from three conventional altimetry missions, Envisat, SARAL/AltiKa, and Jason-2. For all tide gauges, the conventional altimetry missions show an average agreement of 11 cm and 60% in terms of standard deviations of differences and correlations, respectively. There is a tendency that results improve with decreasing distance to the tide gauge and a smaller footprint, underlining the potential of SAR altimetry in coastal zones.
Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to Field Measurements Made During the N-ICE2015 Expedition

We present freeboard measurements from airborne laser scanner (ALS), the Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS), and CryoSat-2 SIRAL radar altimeter; ice thickness measurements from both helicopter-borne and ground-based electromagnetic-sounding; and point measurements of ice properties. This case study was carried out in April 2015 during the N-ICE2015 expedition in the area of the Arctic Ocean north of Svalbard. The region is represented by deep snow up to 1.12 m and a widespread presence of negative freeboards. The main scattering surfaces from both CryoSat-2 and ASIRAS are shown to be closer to the snow freeboard obtained by ALS than to the ice freeboard measured in situ. This case study documents the complexity of freeboard retrievals from radar altimetry. We show that even under cold (below −15°C) conditions the radar freeboard can be close to the snow freeboard...
on a regional scale of tens of kilometers. We derived a modal sea-ice thickness for the study region from CryoSat-2 of 3.9 m compared to measured total thickness 1.7 m, resulting in an overestimation of sea-ice thickness on the order of a factor 2. Our results also highlight the importance of year-to-year regional scale information about the depth and density of the snowpack, as this influences the sea-ice freeboard, the radar penetration, and is a key component of the hydrostatic balance equations used to convert radar freeboard to sea-ice thickness.

General information

State: Published
Organisations: National Space Institute, Geodynamics, Alfred Wegener Institute, Norwegian Polar Institute, University of Bremen, U.S. Army Cold Regions Research and Engineering Laboratory, Colorado State University
Pages: 1123–1141
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Journal of Geophysical Research: Oceans
Volume: 123
ISSN (Print): 0148-0227
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.19 SJR 2.272 SNIP 1.475
Web of Science (2017): Impact factor 2.752
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.36 SJR 2.369 SNIP 1.558
Web of Science (2016): Impact factor 2.733
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.39 SJR 2.754 SNIP 1.605
Web of Science (2015): Impact factor 3.318
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.27 SJR 2.853 SNIP 1.757
Web of Science (2014): Impact factor 3.426
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.38 SJR 3.088 SNIP 1.809
Web of Science (2013): Impact factor 3.44
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.93 SJR 2.917 SNIP 1.522
Web of Science (2012): Impact factor 3.174
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.03 SJR 3.018 SNIP 1.474
Web of Science (2011): Impact factor 3.021
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.056 SNIP 1.753
Web of Science (2010): Impact factor 3.303
Confirmation of the detection of B modes in the Planck polarization maps

One of the main problems of extracting the cosmic microwave background (CMB) from submm/mm observations is correcting for the galactic components, mainly synchrotron, free–free, and thermal dust emission, with the required accuracy. Through a series of papers, it has been demonstrated that this task can be fulfilled by means of simple neural networks with high confidence. The main purpose of this paper is to demonstrate that the CMB BB power spectrum detected in the Planck 2015 polarization maps is present in the improved Planck 2017 maps with higher signal-to-noise ratio. Two features have been detected in the EB power spectrum in the new dataset, both with S/N ∼ 4. The origin of these features is most likely leakage from E to B with a level of about 1%. This leakage does not significantly contribute to the detected BB power spectrum. The TB power spectrum is consistent with a zero signal. Altogether, the BB power spectrum is not consistent with the "canonical" tensor-to-scalar models combined with gravitational lensing spectra. These results will provide additional strong arguments for support to the proposed polarization satellite projects to follow up on the Planck mission.
Contribution of deformation to sea-ice mass balance: a case study from an N-ICE2015 storm

The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne dataset from a 9km2 area of first and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low pressure system. A linear regression model based on divergence during this storm can explain 64% of freeboard variability. Over the survey region we estimated that about 1.3% of level sea ice volume was pressed together into deformed ice and the new ice formed in leads in a week after the deformation event would increase the sea ice volume by 0.5%. As the region is impacted by about 15 storms each winter a simple linear extrapolation would result in about 7% volume increase and 20% deformed ice fraction at the end of the season.
Detecting Exomoons via Doppler Monitoring of Directly Imaged Exoplanets

Teachey et al. recently reported the detection of a candidate exomoon, tentatively designated Kepler-1625b I, around a giant planet in the Kepler field. The candidate exomoon would be about the size and mass of Neptune, considerably larger than any moon in our solar system, and if confirmed, would be the first in a new class of giant moons or binary planets. Motivated by the large mass ratio in the Kepler-1625b planet and satellite system, we investigate the detectability of similarly massive exomoons around directly imaged exoplanets via Doppler spectroscopy. The candidate moon around Kepler-1625b would induce a radial velocity (RV) signal of about 200 km/s on its host planet, large enough that similar moons around directly imaged planets orbiting bright, nearby stars might be detected with current or next generation instrumentation. In addition to searching for exomoons, an RV survey of directly imaged planets could reveal the orientations of the planets' spin axes, making it possible to identify Uranus analogs.
Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Michigan, NASA Goddard Space Flight Center, Wayne State University, Massachusetts Institute of Technology, Kyoto University, University of Cambridge, Universite de Toulouse, SRON Netherlands Institute for Space Research, University of Maryland, NASA Marshall Space Flight Center
Number of pages: 6
Publication date: 2018
Peer-reviewed: Yes

Publication information
Volume: 858
Issue number: 1
Article number: L5
ISSN (Print): 2041-8205
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.07
Web of Science (2017): Impact factor 6.634
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.45
Web of Science (2016): Impact factor 5.522
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 4.33
Web of Science (2015): Impact factor 5.487
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 4.34
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 4.18
Web of Science (2013): Impact factor 5.602
Development of the ATHENA mirror

The development of the X-ray optics for ATHENA (Advanced Telescope for High ENergy Astrophysics)[1-4], the selected second large class mission in the ESA Science Programme, is progressing further, in parallel with the payload preparation and the system level studies. The optics technology is based on the Silicon Pore Optics (SPO) [5-48], which utilises the excellent material properties of Silicon and benefits from the extensive investments made in the semiconductor industry. With its pore geometry the SPO is intrinsically very robust and permits the use of very thin mirrors while achieving good angular resolution. In consequence, the specific mass of the resultant ATHENA optics is very low compared to other technologies, and suitable to cope with the imposed environmental requirements. Further technology developments preparing the ATHENA optics are ongoing, addressing additive manufacturing of the telescope structure, the integration and alignment of the mirror assembly, numerical simulators, coating optimisations, metrology, test facilities, studies of proton reflections and meteorite impacts, etc. A detailed Technology Development Plan was elaborated and is regularly being updated, reflecting the progress and the mission evolution. The required series production and integration of the many hundred mirror modules constituting the ATHENA telescope optics is an important consideration and a leading element in the technology development. The developments are guided by ESA, implemented in industry and supported by research institutions. The many ongoing SPO technology development activities aim at demonstrating the readiness of the optics technology at the review deciding the adoption of ATHENA onto the ESA Science flight programme, currently expected for 2021. Technology readiness levels of 5/6 have to be demonstrated for all critical elements, but also the compliance to cost and schedule constraints for the mission.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, ESTEC, Cosine Measurement Systems, Fraunhofer Institute for Material and Beam Technology IWS, Micronit Microfluidics B.V., SRON Netherlands Institute for Space Research, OHB-System AG, Physikalisch-Technische Bundesanstalt, Max-Planck-Institut fur extraterrestrische Physik, National Institute for Astrophysics, Teledyne Scientific and Imaging, Thales Alenia Space Switzerland AG, Media Lario S.r.l.
Number of pages: 15
Publication date: 2018

Host publication information
Title of host publication: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
Volume: 10699
Publisher: SPIE - International Society for Optical Engineering
Article number: 106990X
Keywords: X-ray optics, X-ray astronomy, ATHENA, Silicon Pore Optics, X-ray telescopes, X-ray testing, Technology preparation, Additive manufacturing
Electronic versions: 106990X.pdf
DOI: 10.1117/12.2313296
Source: Findit
Source-ID: 2438297635
Research output: Research - peer-review › Article in proceedings – Annual report year: 2018
Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers (Karakoram–Himalaya)
Although a number of studies indicate the regional heterogeneity of the glacier elevation and mass changes in high-
mountain Asia in the early 21st century, little is known about these changes with high spatial detail for some of the regions.
In this study we present respective glacier elevation and mass change estimates in the Indian state of Jammu and
Kashmir (JK) for the period 2000–2012. Our estimates are based on the interferometric analysis of SRTM DEM and the
bistatic TanDEM-X data. On an average the JK East (Karakoram) glaciers showed less negative elevation changes (~
0.19 ± 0.22 m yr$^{-1}$) compared to the JK West (Himalaya) glaciers (~ 0.50 ± 0.28 m yr$^{-1}$). This agrees very well with
previous studies that show a transition from larger changes in the western Himalaya to a steady-state situation in the
Karakoram. We observe distinct elevation change patterns on a glacier scale that is most likely linked to debris insulation
and the enhanced ice melting due to supraglacial lakes, ponds and ice cliffs. We also found 16 surge-type glaciers in the
JK East which were not documented before. In total, 25 glaciers surged and 4 others appeared to be in a quiescent phase
in the observation period. Our results also reveal that the glacier-averaged elevation change rates of surge-type and non
surge-type glaciers in the JK East region are not significantly different.

General information
State: Published
Organisations: National Space Institute, Geodesy, Friedrich-Alexander-Universität Erlangen-Nürnberg
Contributors: Vijay, S., Braun, M.
Pages: 137-146
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Global and Planetary Change
Volume: 165
ISSN (Print): 0921-8181
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.21 SJR 1.779 SNIP 1.518
Web of Science (2017): Impact factor 2.375
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.16 SJR 1.748 SNIP 1.62
Web of Science (2016): Impact factor 2.578
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.67 SJR 1.832 SNIP 1.412
Web of Science (2015): Impact factor 2.525
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.52 SJR 1.7 SNIP 1.546
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.86 SJR 1.899 SNIP 1.617
Web of Science (2013): Impact factor 2.752
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.47 SJR 2.014 SNIP 1.465
Web of Science (2012): Impact factor 2.745
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.68 SJR 2.041 SNIP 1.608
Web of Science (2011): Impact factor 2.392
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.179 SNIP 1.721
Web of Science (2010): Impact factor 2.39
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.071 SNIP 1.666
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.655 SNIP 1.247
Scopus rating (2007): SJR 1.709 SNIP 1.305
Web of Science (2007): Indexed yes
Scopus rating (2005): SJR 1.762 SNIP 1.244
Scopus rating (2004): SJR 1.672 SNIP 0.989
Scopus rating (2003): SJR 1.466 SNIP 1.079
Scopus rating (2002): SJR 1.276 SNIP 0.758
Scopus rating (2001): SJR 0.908 SNIP 0.983
Scopus rating (2000): SJR 1.319 SNIP 0.902
Scopus rating (1999): SJR 1.47 SNIP 1.217
Original language: English
Keywords: Glacier elevation change, SAR interferometry, TanDEM-X, SRTM, Jammu and Kashmir, Himalaya, Karakoram
DOIs: 10.1016/j.gloplacha.2018.03.014
Source: FindIt
Source-ID: 2398536994
Research output: Research - peer-review ; Journal article – Annual report year: 2018

Earth's Magnetic Field: Understanding Geomagnetic Sources from the Earth's Interior and its Environment
This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes and physics. Key is the separation of the field sources in the observations, especially, but not solely, during times of quiet geomagnetic conditions, when the most subtle geomagnetic effects can be identified and become significant. The collected articles are based on the current constellation of ground and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences.

General information
State: Published
Organisations: National Space Institute, Geomagnetism, Deutsches Geoforschungszentrum , National Center for Atmospheric Research, Uppsala University
Number of pages: 626
Publication date: 2018

Publication information
Publisher: Springer
ISBN (Electronic): 978-94-024-1224-6
Original language: English

Bibliographical note
Originally published in Space Science Reviews, Volume 206, Issue 1-4, March 2017
Research output: Research - peer-review ; Book – Annual report year: 2018

EPIC211682544 b: A 50-day period sub-Neptune with a mass measurement using HARPS-N
This paper reports on the validation and mass measurement of EPIC211682544 b, a sub-Neptune orbiting a quiet G9V star. Using K2 data from campaigns C5 and C16, we find this planet to have a period of 50.818947 ± 0.000094 days and a radius of 2.41 ± 0.12 R⊕. We followed this system with HARPS-N to obtain 67 precise radial velocities. A combined fit of the transit and radial velocity data reveals that EPIC211682544 b has a mass of 14.8 ± 3.1 M⊕. Its bulk density (5.7+1.6/–1.4 g cm−3) implies that this planet has a significant envelope of water or other volatiles around a rocky core.
EPIC211682544 b likely formed in a similar way as the cores of the four giant planets in our own Solar System, but for some reason, did not accrete much gas. The planetary mass was confirmed by an independent Gaussian process-based fit to both the radial velocities and the spectroscopic activity indicators. EPIC211682544 b belongs to only a handful of confirmed K2 exoplanets with periods longer than 40 days. It is among the longest periods for a small planet with a precisely determined mass using radial velocities.
Planets and satellites: EPIC211682544 b, Techniques: photometric, Techniques: radial velocities, Techniques: spectroscopic

Electrical versions:
sty2360.pdf
sty2360.pdf

DOI:
10.1093/mnras/sty2360

Bibliographic note
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [insert complete citation information here] is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty2360/5090159

Source: Findit
Source-ID: 2438810100
Research output: Research - peer-review › Journal article – Annual report year: 2018

EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary ("EB") with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity ("RV") spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \(\dot{Y} = 0.0024 \pm 0.0007 \, \text{cm s}^{-2} \); (3) small irregular variations are seen in the eclipse-timing variations ("ETVs") detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Szeged, Aarhus University, Massachusetts Institute of Technology, Bishop's University, Harvard-Smithsonian Center for Astrophysics, Hereford
Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2 and in situ observations was found to be 0.38 meters. CryoSat-2 was also shown to be useful for channel roughness calibration in a hydrodynamic model of the Po River. The small across-track distance of CryoSat-2 means that observations are distributed almost continuously along the river. This allowed resolving channel roughness with higher spatial resolution than possible with in situ or virtual station altimetry data. Despite the Po River being extensively monitored, CryoSat-2 still provides added value thanks to its unique spatio-temporal sampling pattern.
Web of Science (2017): Impact factor 3.512
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.53 SJR 2.202 SNIP 2.036
Web of Science (2016): Impact factor 3.221
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.31 SJR 2.24 SNIP 2.062
Web of Science (2015): Impact factor 4.349
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.66 SJR 1.951 SNIP 1.951
Web of Science (2014): Impact factor 3.417
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.03 SJR 1.432 SNIP 1.748
Web of Science (2013): Impact factor 2.78
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.81 SJR 1.567 SNIP 1.743
Web of Science (2012): Impact factor 2.412
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.84 SJR 1.614 SNIP 1.714
Web of Science (2011): Impact factor 2.449
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.712 SNIP 1.466
Web of Science (2010): Impact factor 2.477
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.866 SNIP 1.639
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.566 SNIP 1.579
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.503 SNIP 1.497
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.296 SNIP 1.538
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.632 SNIP 1.86
Scopus rating (2004): SJR 1.358 SNIP 1.575
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.314 SNIP 1.536
Scopus rating (2002): SJR 1.117 SNIP 1.421
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.174 SNIP 0.995
Scopus rating (2000): SJR 1.192 SNIP 1.377
Scopus rating (1999): SJR 1.43 SNIP 1.021

Original language: English
Keywords: Meteorological Instrumentation, Surface Water, Satellites, Data Processing, Mechanics, Pressure Measuring Instruments, Calibration, CryoSat-2, River channel roughness, Rivers, Satellite altimetry, Validation, Aneroid altimeters, Data handling, Fluid dynamics, Hydrodynamics, Meteorological instruments, Orbits, Surface waters, Water levels, Cryosat, In-situ observations, Monitoring technologies, River channels, Satellite altimetry data, Spatio-temporal samplings
Experimental study of H_2SO_4 aerosol nucleation at high ionization levels

One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H_2SO_4) was studied as a function of ionization and H_2SO_4 concentration. Other species that could have participated in the nucleation, such as NH$_3$ or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017). Our parameter space is thus $[\text{H}_2\text{SO}_4] = 4 \times 10^6 - 3 \times 10^7 \text{cm}^{-3}$, $[\text{NH}_3 + \text{org}] = 2.2\text{ppb}$, $T=295\text{K}$, $\text{RH}=38\%$, and ion concentrations of 1700–19000cm$^{-3}$. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10) at a size close to critical cluster size (mobility diameter of \sim1.4nm) and formation rates at a mobility diameter of \sim4nm were measured with a CPC (TSI model 3775). The measurements show that nucleation increases by around an order of magnitude when the ionization increases from background to supernova levels under fixed gas conditions. The results expand the parameterization presented in Dunne et al. (2016) and Gordon et al. (2017) (for $[\text{NH}_3 + \text{org}] = 2.2\text{ppb}$ and $T=295\text{K}$) to lower sulfuric acid concentrations and higher ion concentrations. The results make it possible to expand the parameterization presented in Dunne et al. (2016) and Gordon et al. (2017) to higher ionization levels.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics
Contributors: Tomicic, M., Bødker Enghoff, M., Svensmark, H.
Pages: 5921-5930
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Atmospheric Chemistry and Physics
Volume: 18
Issue number: 8
ISSN (Print): 1680-7316
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.44 SJR 3.032 SNIP 1.519
Web of Science (2017): Impact factor 5.509
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.72 SJR 3.356 SNIP 1.776
Web of Science (2016): Impact factor 5.318
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.19 SJR 3.298 SNIP 1.526
Web of Science (2015): Impact factor 5.114
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.17 SJR 3.607 SNIP 1.691
Web of Science (2014): Impact factor 5.053
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.34 SJR 3.796 SNIP 1.824
Web of Science (2013): Impact factor 5.298
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Feed Array Breadboard for Future Passive Microwave Radiometer Antennas

The pattern of a 265 mm x 200 mm breadboard made of 35 x-polarized and 32 y-polarized Vivaldi antennas located above a finite ground plane is computed and measured at 6.9 GHz. The breadboard constitutes the feed array illuminating a 5 m conical scan antenna working at 6.9 GHz for next generation microwave radiometers for ocean observation. The analysis is done including mutual coupling between the elements, and in two commercial software, the MoM add-on to GRASP and CST. The breadboard is measured at the Spherical Near-Field Antenna Test Facility at the Technical University of Denmark.

General information
State: Published
Organisations: Microwaves and Remote Sensing, National Space Institute, TICRA, Chalmers University of Technology, ESTEC
Contributors: Cappellin, C., de Lasson, J. R., Iupikov, O., Ivashina, M., Skou, N., Pontoppidan, K., Fiorelli, B.
Number of pages: 5
Publication date: 2018

Host publication information
Title of host publication: 12th European Conference on Antennas and Propagation (EUCAP 2017)
Publisher: Institution of Engineering and Technology
ISBN (Electronic): 9781785618161
FIES fiber injection upgrade

We report on the upgrade of the fiber link of FIES, the high-resolution echelle spectrograph at the Nordic Optical Telescope (NOT). In order to improve the radial velocity (RV) stability of FIES, we replaced the circular fibers by octagonal and rectangular ones to utilize their superior scrambling performance. Two additional fibers for a planned polarimetry mode were added during the upgrade. The injection optics and the telescope front-end were also replaced. The first on-sky RV measurements indicate that the influence of guiding errors is greatly suppressed, and the overall RV precision of FIES has significantly improved.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Chicago, Macquarie University, University of Turin, Instituto de Astrofísica de Canarias
Contributors: Stürmer, J., Seifahrt, A., Schwab, C., Gandolfi, D., Montanés Rodriguez, P., Buchhave, L.
Number of pages: 5
Publication date: 2018

Host publication information

Title of host publication: Proceedings of SPIE 10702 - Ground-based and Airborne Instrumentation for Astronomy VII
Volume: 10702
Publisher: SPIE - International Society for Optical Engineering
Editors: J. Evans, C., Simard, L., Takami, H.
Article number: 107022S
ISBN (Print): 9781510619517
Keywords: Optical fibers, Radial velocity, FIES, Echelle, Spectrograph
Electronic versions:
107022S.pdf
DOIs:
10.1117/12.2313052
Source: Scopus
Source-ID: 85051839536

Geodetic measurements reveal short-term changes of glacial mass near Jakobshavn Isbræ (Greenland) from 2007 to 2017

The Global Positioning System (GPS) and Gravity Recovery and Climate Experiment (GRACE) provide important geodetic datasets to study glacial mass change. Applying the multichannel singular spectral analysis to the GPS-measured vertical and horizontal crustal displacement and GRACE-derived vertical displacement near Jakobshavn Isbræ (JI) in western Greenland from 2007 to 2017, we reconstruct the short-term loading displacements due to ice mass changes. Both the vertical and east displacements show strong seasonal variability. They also reveal three episodes of transient displacements: downward and eastward motion from late 2007 to around 2010, sustained upward and westward motion from 2010 to early 2013, and downward and eastward motion till late 2016. We also forward model the seasonal and transient displacements caused by surface mass balance (SMB) and glacier dynamics. Our model agrees well with the geodetic observations and provides quantitative insights into the contribution from SMB and ice dynamics to the ice mass changes. We find that SMB is the dominant contributor to the seasonal and transient displacements at three out of four GPS sites (AASI, ILUL, and QEQE). While, at the fourth GPS site (KAGA) that is closest to the glacier, the contributions to the transient displacements from SMB and glacier dynamics are comparable. The forward modeling also suggests that the dynamic mass change in the JI catchment underwent strong seasonal variations and these variations correlated more with the seasonal retreat and advance of the calving front than with the changes of glacial velocities. Our altimetry results reveal that the frontal portion of JI catchment lost 34 Gt in 2012 and this loss of ice declined to only 11 Gt in 2016 due to widespread thickening along the main flowline.

General information

State: Published
Organisations: National Space Institute, Geodesy, Chinese University of Hong Kong, Wuhan University, University of Luxembourg, The Ohio State University, Alfred Wegener Institute
Contributors: Zhang, B., Zhang, E., Liu, L., Khan, S. A., van Dam, T., Yao, Y., Bevis, M., Helm, V.
Pages: 216-226
Publication date: 2018
Peer-reviewed: Yes
Global sea-level budget 1993 - present

Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g., acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled "Regional Sea Level and Coastal Impacts", an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level budget during the altimetry era (1993 to present). These datasets are based on the combination of a broad range of space-based and in situ observations, model estimates, and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research. This effort involves several tens of scientists from about 50 research teams/institutions worldwide (www.wcrp-climate.org/grand-challenges/gc-sea-level, last access: 22 August 2018). The results presented in this paper are a synthesis of the first assessment performed during 2017–2018. We present estimates of the altimetry-based global mean sea level (average rate of 3.1±0.3 m yr⁻¹ and acceleration of 0.1 m yr⁻² over 1993–present), as well as of the different components of the sea-level budget (http://doi.org/10.17882/54854, last access: 22 August 2018). We further examine closure of the sea-level budget, comparing the observed global mean sea level with the sum of components. Ocean thermal expansion, glaciers, Greenland and Antarctica contribute 42%, 21%, 15% and 8% to the global mean sea level over the 1993–present period. We also study the sea-level budget over 2005–present, using GRACE-based ocean mass estimates instead of the sum of individual mass components. Our results demonstrate that the global mean sea level can be closed to within 0.3 m yr⁻¹ (1σ). Substantial uncertainty remains for the land water storage component, as shown when examining individual mass contributions to sea level.

General information

State: Published
Organisations: National Space Institute, Geodynamics, Laboratoire d'Études en Géophysique et Océanographie Spatiales, Collecte Localisation Satellites, NASA Goddard Space Flight Center, European Centre for Medium-Range Weather Forecasts, University of Bristol, National Oceanographic and Atmospheric Administration, Goethe University Frankfurt, University of Bremen, Institute of Earth Sciences Academia Sinica Taiwan, European Space Agency - ESA, University of South Florida, University of Texas, Chinese Academy of Sciences, University of New South Wales, Trent University, University of Siegen, IFREMER, CSIRO, University of Born, University of Urbino, Technische Universität Dresden, Old Dominion University, Swiss Federal Institute of Technology, University of Grenoble, Meteorological Research Institute, University of Bern, NOC, University of Leeds, Laboratory for Ocean Physics and Satellite Remote Sensing, Australian National University, University of Oslo, Universite de Rennes 1, Universitat de les Illes Balears, University of Reading, University of California at San Diego, University of Ottawa, University of California at Irvine, Mercator Océan, University of Colorado, Puertos del Estados, Woods Hole Oceanographic Institution, Aerodyne Research, Inc, University of Zurich, Alfred Wegener Institute, Delft University of Technology, The Ohio State University, University of Hamburg, Utrecht University, Bjerknes Centre for Climate Research, University of Tasmania, California Institute of Technology, Universite de La Rochelle, Università degli Studi di Urbino Carlo Bo, University of California

Pages: 1551-1590
Publication date: 2018
Peer-reviewed: Yes
The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploring system (G-TERN) was proposed in response to ESA’s Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper” of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025–2030 or optimally 2025–2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.
Helicopter Test of a Strapdown Airborne Gravimetry System

Airborne gravimetry from a helicopter has been a feasible tool since the 1990s, with gravimeters mounted on a gyro-stabilised platform. In contrast to fixed-wing aircrafts, the helicopter allows for a higher spatial resolution, since it can move slower and closer to the ground. In August 2016, a strapdown gravimetry test was carried out over the Jakobshavn Glacier in Greenland. To our knowledge, this was the first time that a strapdown system was used in a helicopter. The strapdown configuration is appealing because it is easily installed and requires no operation during flight. While providing additional information over the thickest part of the glacier, the survey was designed to assess repeatability both within the survey and with respect to profiles flown previously using a gyro-stabilised gravimeter. The system's ability to fly at an altitude following the terrain, i.e., draped flying, was also tested. The accuracy of the gravity profiles was estimated to 2 mGal and a method for inferring the spatial resolution was investigated, yielding a half-wavelength spatial resolution of 4.5 km at normal cruise speed.

General information
State: Published
Organisations: National Space Institute, Geodynamics
Contributors: Jensen, T. E., Forsberg, R.
Number of pages: 16
Publication date: 2018
Peer-reviewed: Yes
High-Energy Emissions induced by air density fluctuations of discharges

Bursts of X- and γ-rays are observed from lightning and laboratory sparks. They are bremsstrahlung from energetic electrons interacting with neutral air molecules, but it is still unclear how the electrons achieve the required energies. It has been proposed that the enhanced electric field of streamers, found in the corona of leader tips, may account for the acceleration, however, their efficiency is questioned because of the relatively low production rate found in simulations. Here we emphasize that streamers usually are simulated with the assumption of homogeneous gas, which may not be the case on the small temporal and spatial scales of discharges. Since the streamer properties strongly depend on the reduced electric field E/n, where n is the neutral number density, fluctuations may potentially have a significant effect. To explore what might be expected if the assumption of homogeneity is relaxed, we conducted simple numerical experiments based on simulations of streamers in a neutral gas with a radial gradient in the neutral density, assumed to be created, for instance, by a previous spark. We also studied the effects of background electron density from previous discharges. We find that X- and γ-radiation is enhanced when the on-axis air density is reduced by more than $\Delta 1/425\%$. Pre-ionization tends to reduce the streamer field and thereby the production rate of high-energy electrons, however, the reduction is modest. The simulations suggest that fluctuations in the neutral densities, on the temporal and spacial scales of streamers, may be important for electron acceleration and bremsstrahlung radiation.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics
Contributors: Köhn, C., Chanrion, O., Neubert, T.
Pages: 5194-5203
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Geophysical Research Letters
Volume: 45
Issue number: 10
ISSN (Print): 0094-8276
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.51 SJR 2.657 SNIP 1.429
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.35 SJR 2.819 SNIP 1.495
Web of Science (2016): Impact factor 4.253
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.27 SJR 3.144 SNIP 1.496
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.26 SJR 3.135 SNIP 1.552
Web of Science (2014): Impact factor 4.196
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.45 SJR 3.24 SNIP 1.728
Web of Science (2013): Impact factor 4.456
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.82 SJR 3.122 SNIP 1.577
Web of Science (2012): Impact factor 3.982
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.79 SJR 2.935 SNIP 1.556
Web of Science (2011): Impact factor 3.792
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.934 SNIP 1.416
Web of Science (2010): Impact factor 3.505
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.742 SNIP 1.387
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.573 SNIP 1.325
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.361 SNIP 1.248
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.262 SNIP 1.299
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.239 SNIP 1.257
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.261 SNIP 1.348
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.906 SNIP 1.285
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.087 SNIP 1.4
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.403 SNIP 1.292
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.337 SNIP 1.313
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.353 SNIP 1.163

Original language: English

Electronic versions:

DOIs:
10.1029/2018GL077788

Bibliographical note
©2018. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Source: FindIt
Source-ID: 2434288971
Research output: Research - peer-review › Journal article – Annual report year: 2018
Holocene history of the Helheim Glacier, southeast Greenland

Helheim Glacier ranks among the fastest flowing and most ice discharging outlets of the Greenland Ice Sheet (GrIS). After undergoing rapid speed-up in the early 2000s, understanding its long-term mass balance and dynamic has become increasingly important. Here, we present the first record of direct Holocene ice-marginal changes of the Helheim Glacier following the initial deglaciation. By analysing cores from lakes adjacent to the present ice margin, we pinpoint periods of advance and retreat. We target threshold lakes, which receive glacial meltwater only when the margin is at an advanced position, similar to the present. We show that, during the period from 10.5 to 9.6 cal ka BP, the extent of Helheim Glacier was similar to that of today, after which it remained retracted for most of the Holocene until a re-advance caused it to reach its present extent at c. 0.3 cal ka BP, during the Little Ice Age (LIA). Thus, Helheim Glacier's present extent is the largest since the last deglaciation, and its Holocene history shows that it is capable of recovering after several millennia of warming and retreat. Furthermore, the absence of advances beyond the present-day position during for example the 9.3 and 8.2 ka cold events as well as the early-Neoglacial suggest a substantial retreat during most of the Holocene.

General information
State: Published
Organisations: National Space Institute, Geodesy, Aarhus University, University of Copenhagen, Swansea University, University of California at Irvine, Geological Survey of Denmark and Greenland, National Museum of Denmark
Pages: 145-158
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Quaternary Science Reviews
Volume: 193
ISSN (Print): 0277-3791
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.51 SJR 2.668 SNIP 1.55
Web of Science (2017): Impact factor 4.334
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.9 SJR 2.795 SNIP 1.8
Web of Science (2016): Impact factor 4.797
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.49 SJR 2.674 SNIP 1.534
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.6 SJR 2.664 SNIP 1.657
Web of Science (2014): Impact factor 4.572
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.99 SJR 3.062 SNIP 1.765
Web of Science (2013): Impact factor 4.571
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.29 SJR 3.251 SNIP 1.661
Web of Science (2012): Impact factor 4.076
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.4 SJR 3.216 SNIP 1.774
Web of Science (2011): Impact factor 3.973
ISI indexed (2011): ISI indexed yes
Informing a hydrological model of the Ogooué with multi-mission remote sensing data

Remote sensing provides a unique opportunity to inform and constrain a hydrological model and to increase its value as a decision-support tool. In this study, we applied a multi-mission approach to force, calibrate and validate a hydrological model of the ungauged Ogooué river basin in Africa with publicly available and free remote sensing observations. We used a rainfall–runoff model based on the Budyko framework coupled with a Muskingum routing approach. We parametrized the model using the Shuttle Radar Topography Mission digital elevation model (SRTM DEM) and forced it using precipitation from two satellite-based rainfall estimates, FEWS-RFE (Famine Early Warning System rainfall estimate) and the Tropical Rainfall Measuring Mission (TRMM) 3B42 v.7, and temperature from ECMWF ERA-Interim. We combined three different datasets to calibrate the model using an aggregated objective function with contributions from (1) historical in situ discharge observations from the period 1953–1984 at six locations in the basin, (2) radar altimetry measurements of river stages by Envisat and Jason-2 at 12 locations in the basin and (3) GRACE (Gravity Recovery and Climate Experiment) total water storage change (TWSC). Additionally, we extracted CryoSat-2 observations throughout the basin using a Sentinel-1 SAR (synthetic aperture radar) imagery water mask and used the observations for validation of the model. The use of new satellite missions, including Sentinel-1 and CryoSat-2, increased the spatial characterization of river stage. Throughout the basin, we achieved good agreement between observed and simulated discharge and the river stage, with an RMSD between simulated and observed water amplitudes at virtual stations of 0.74m for the TRMM-forced model and 0.87m for the FEWS-RFE-forced model. The hydrological model also captures overall total water storage change patterns, although the amplitude of storage change is generally underestimated. By combining hydrological modeling with multi-mission remote sensing from 10 different satellite missions, we obtain new information on an otherwise unstudied basin. The proposed model is the best current baseline characterization of hydrological conditions in the Ogooué in light of the available observations.

General information
State: Published
Organisations: Department of Environmental Engineering, Air, Land & Water Resources, National Space Institute, Geodesy, DHI GRAS
Contributors: Kittel, C. M. M., Nielsen, K., Tøttrup, C., Bauer-Gottwein, P.
Pages: 1453-1472
Publication date: 2018
Peer-reviewed: Yes
Swift J0243.6+6124 is a newly discovered Galactic Be/X-ray binary, revealed in late 2017 September in a giant outburst with a peak luminosity of \(2 \times 10^{39}(d/7 \text{ kpc})^2\, \text{erg s}^{-1}\) (0.1–10 keV), with no formerly reported activity. At this luminosity, Swift J0243.6+6124 is the first known galactic ultraluminous X-ray pulsar. We describe Neutron star Interior Composition Explorer (NICER) and Fermi Gamma-ray Burst Monitor (GBM) timing and spectral analyses for this source. A new orbital ephemeris is obtained for the binary system using spin frequencies measured with GBM and 15–50 keV fluxes measured with the Neil Gehrels Swift Observatory Burst Alert Telescope to model the system’s intrinsic spin-up. Power spectra measured with NICER show considerable evolution with luminosity, including a quasi-periodic oscillation near 50 mHz that is omnipresent at low luminosity and has an evolving central frequency. Pulse profiles measured over the combined 0.2–100 keV range show complex evolution that is both luminosity and energy dependent. Near the critical luminosity of \(L \sim 10^{38}\, \text{erg s}^{-1}\), the pulse profiles transition from single peaked to double peaked, the pulsed fraction reaches a minimum in all energy bands, and the hardness ratios in both NICER and GBM show a turnover to softening as the intensity increases. This behavior repeats as the outburst rises and fades, indicating two distinct accretion regimes. These two regimes are suggestive of the accretion structure on the neutron star surface transitioning from a Coulomb collisional stopping mechanism at lower luminosities to a radiation-dominated stopping mechanism at higher luminosities. This is the highest observed (to date) value of the critical luminosity, suggesting a magnetic field of \(B \sim 10^{13}\, \text{G}\).
NICER Detection of Strong Photospheric Expansion during a Thermonuclear X-Ray Burst from 4U 1820–30

The Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS) observed strong photospheric expansion of the neutron star in 4U 1820–30 during a Type I X-ray burst. A thermonuclear helium flash in the star’s envelope powered a burst that reached the Eddington limit. Radiation pressure pushed the photosphere out to ~200 km, while the blackbody temperature dropped to 0.45 keV. Previous observations of similar bursts were performed with instruments that are sensitive only above 3 keV, and the burst signal was weak at low temperatures. NICER's 0.2–12 keV passband enables the first complete detailed observation of strong expansion bursts. The strong expansion lasted only 0.6 s, and was followed by moderate expansion with a 20 km apparent radius, before the photosphere finally settled back down at 3 s after the burst onset. In addition to thermal emission from the neutron star, the NICER spectra reveal a second component that is well fit by optically thick Comptonization. During the strong expansion, this component is six times brighter than prior to the burst, and it accounts for 71% of the flux. In the moderate expansion phase, the Comptonization flux drops, while the thermal component brightens, and the total flux remains constant at the Eddington limit. We speculate that the thermal emission is reprocessed in the accretion environment to form the Comptonization component, and that changes in the covering fraction of the star explain the evolution of the relative contributions to the total flux.
NicER Detects a Soft X-Ray Kilohertz Quasi-periodic Oscillation in 4U 0614+09

We report on the detection of a kilohertz quasi-periodic oscillation (QPO) with the Neutron Star Interior Composition Explorer (NicER). Analyzing approximately 165 ks of NicER exposure on the X-ray burster 4U 0614+09, we detect multiple instances of a single-peak upper kHz QPO, with centroid frequencies that range from 400 to 750 Hz. We resolve the kHz QPO as a function of energy, and measure, for the first time, the QPO amplitude below 2 keV. We find the fractional amplitude at 1 keV is on the order of 2% rms, and discuss the implications for the QPO emission process in the context of Comptonization models.

NICER Observes the Effects of an X-Ray Burst on the Accretion Environment in Aql X-1

Accretion disks around neutron stars regularly undergo sudden strong irradiation by Type-I X-ray bursts powered by unstable thermonuclear burning on the stellar surface. We investigate the impact on the disk during one of the first X-ray burst observations with the Neutron Star Interior Composition Explorer (NICER) on the International Space Station. The burst is seen from Aql X-1 during the hard spectral state. In addition to thermal emission from the neutron star, the burst spectrum exhibits an excess of soft X-ray photons below 1 keV, where NICER’s sensitivity peaks. We interpret the excess as a combination of reprocessing by the strongly photoionized disk and enhancement of the pre-burst persistent flux,
possibly due to Poynting–Robertson drag or coronal reprocessing. This is the first such detection for a short sub-
Eddington burst. As these bursts are observed frequently, NICER will be able to study how X-ray bursts affect the disk and
corona for a range of accreting neutron star systems and disk states.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Maryland, NASA Goddard
Space Flight Center, Wayne State University, Massachusetts Institute of Technology, University of Cambridge, Universite
de Toulouse, Istanbul University, SRON Netherlands Institute for Space Research, University of Illinois at Urbana-
Champaign, Naval Research Laboratory, University of Michigan
Contributors: Keek, L., Arzoumanian, Z., Bult, P., Cackett, E. M., Chakrabarty, D., Chenevez, J., Fabian, A. C., Gendreau,
K. C., Guillot, S., Güver, T., Homan, J., Jaisawal, G. K., Lamb, F. K., Ludlam, R. M., Mahmoodifar, S., Markwardt, C. B.,
Number of pages: 6
Publication date: 2018
Peer-reviewed: Yes

Publication information
Volume: 855
Issue number: 1
Article number: L4
ISSN (Print): 2041-8205
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.07
Web of Science (2017): Impact factor 6.634
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.45
Web of Science (2016): Impact factor 5.522
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 4.33
Web of Science (2015): Impact factor 5.487
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 4.34
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 4.18
Web of Science (2013): Impact factor 5.602
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.93
Web of Science (2012): Impact factor 6.345
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 5.85
Web of Science (2011): Impact factor 5.526
ISI indexed (2011): ISI indexed no
Web of Science (2010): Impact factor 5.158
Original language: English
Electronic versions:
Keek_2018_ApJL_855_L4_1.pdf
DOIs:
10.3847/2041-8213/aab104

Bibliographical note
Free article
Source: FindIt
Source-ID: 2396797461
In situ study of electric field controlled ion transport in the Fe/BaTiO_3 interface

Electric field controlled ion transport and interface formation of iron thin films on a BaTiO_3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 angstrom increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Hungarian Academy of Sciences, Delft University of Technology, European Synchrotron Radiation Facility
Number of pages: 7
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Materials Research Express
Volume: 5
Issue number: 1
Article number: 016405
ISSN (Print): 2053-1591
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 1.12 SJR 1.429 SNIP 0.454
Web of Science (2017): Impact factor 1.151
Scopus rating (2016): CiteScore 0.87 SJR 0.35 SNIP 0.595
Web of Science (2016): Impact factor 1.068
Scopus rating (2015): CiteScore 1.04 SJR 0.411 SNIP 0.553
Web of Science (2015): Impact factor 0.968
Original language: English
Keywords: Multiferroics, Nuclear resonance scattering, Thin film, BaTiO3, Magnetism
DOIs:
10.1088/2053-1591/aaa16c
Source: FindIt
Source-ID: 2394740738
Research output: Research - peer-review > Journal article – Annual report year: 2018

INTEGRAL results on the electromagnetic counterparts of gravitational waves
Thanks to its high orbit and a set of complementary detectors providing continuous coverage of the whole sky, the INTEGRAL satellite has unique capabilities for the identification and study of the electromagnetic radiation associated to gravitational waves signals and, more generally, for multi-messenger astrophysics. Here we briefly review the results obtained during the first two observing runs of the advanced LIGO/Virgo interferometers.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, National Institute for Astrophysics, University of Geneva, ESTEC, Max-Planck-Institut fur extraterrestrische Physik, University College Dublin, French Alternative Energies and Atomic Energy Commission, Moscow Institute of Physics and Technology, Universite de Toulouse, RAS - Space Research Institute
Publication date: 2018
Intercomparison and validation of SAR-based ice velocity measurement techniques within the Greenland Ice Sheet CCI project

Ice velocity is one of the products associated with the Ice Sheets Essential Climate Variable. This paper describes the intercomparison and validation of ice-velocity measurements carried out by several international research groups within the European Space Agency Greenland Ice Sheet Climate Change Initiative project, based on space-borne Synthetic Aperture Radar (SAR) data. The goal of this activity was to survey the best SAR-based measurement and error characterization approaches currently in practice. To this end, four experiments were carried out, related to different processing techniques and scenarios, namely differential SAR interferometry, multi aperture SAR interferometry and offset-tracking of incoherent as well as of partially-coherent data. For each task, participants were provided with common datasets covering areas located on the Greenland ice-sheet margin and asked to provide mean velocity maps, quality characterization and a description of processing algorithms and parameters. The results were then intercompared and validated against GPS data, revealing in several cases significant differences in terms of coverage and accuracy. The algorithmic steps and parameters influencing the coverage, accuracy and spatial resolution of the measurements are discussed in detail for each technique, as well as the consistency between quality parameters and validation results. This allows several recommendations to be formulated, in particular concerning procedures which can reduce the impact of analyst decisions, and which are often found to be the cause of sub-optimal algorithm performance.

General information
State: Published
Number of pages: 37
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing
Volume: 10
Issue number: 6
Article number: 929
ISSN (Print): 2072-4292
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.03 SJR 1.386 SNIP 1.559
Web of Science (2017): Impact factor 3.406
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.56 SJR 1.309 SNIP 1.718
Web of Science (2016): Impact factor 3.244
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 3.76 SJR 1.349 SNIP 1.682
Web of Science (2015): Impact factor 3.036
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.23 SJR 1.275 SNIP 1.856
Web of Science (2014): Impact factor 3.18
Interplanetary magnetic field B_x component influence on horizontal and field-aligned currents in the ionosphere

Statistical analyses have shown that the sunward component of the interplanetary magnetic field, B_x (GSM), moderately but significantly affects the auroral intensity. These observations have been interpreted as signatures of a similar IMF B_x control on Birkeland currents, yet to be observed directly. Such a control, attributed to differences in magnetic tension on newly opened magnetic field lines, would lead to stronger region 1 (R1) Birkeland currents for B_x negative (positive) conditions in the northern (southern) hemisphere than when B_x is positive (negative). In this paper we perform a detailed investigation of three different sets of magnetic field measurements, from the CHAMP and Swarm low-Earth-Orbit satellites, from the AMPERE products derived from the Iridium satellite constellation, and from the SuperMAG ground magnetometer network, each analyzed using different techniques, to test these predictions. The results show that a change in sign of B_x changes the Birkeland currents by no more than $\approx 10\%$. The current patterns show little support for an inter-hemispheric asymmetry of the kind proposed to explain auroral observations. Instead we propose an alternative interpretation, which is consistent with most of the auroral observations and with the current observations in the present paper, except for those based on AMPERE: The solar wind-magnetosphere coupling is more efficient when the dipole tilt angle and B_x have the same sign than when they are different. We suggest the higher coupling is because the dayside reconnection region is closer to the subsolar point when the dipole tilt angle and B_x have the same sign.

General information
State: Published
Organisations: National Space Institute, Geomagnetism, University of Bergen
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Geophysical Research: Space Physics
ISSN (Print): 0148-0227
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.19 SJR 2.272 SNIP 1.475
Web of Science (2017): Impact factor 2.752
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.36 SJR 2.369 SNIP 1.558
NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4 M and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuSTAR, Swift and INTEGRAL observations, is dominated by Comptonisation of soft thermal seed photons with a temperature of ∼0.7 keV by electrons heated to 21 keV. We also detect black-body-like thermal direct emission that is compatible with an emission region of a few kilometers and a temperature compatible with the seed source of Comptonisation. A weak Gaussian line centred on the iron Kα complex can be interpreted as a signature of disc reflection. A similar spectrum characterises the NICER spectra, which was measured when the outburst faded.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Cagliari, University of Geneva, Naval Research Laboratory, University of Tübingen, Kyoto University, University of Southampton, University of Palermo, NASA Goddard Space Flight Center, Osservatorio Astronomico Roma, Columbia University, Massachusetts Institute of Technology, CNRS, Universite de Toulouse
Number of pages: 5
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astronomy and Astrophysics
Volume: 617
Article number: L8
ISSN (Print): 0004-6361
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68 SJR 2.234 SNIP 1.199
Web of Science (2016): Impact factor 5.014
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.5 SJR 2.545 SNIP 1.224
Web of Science (2015): Impact factor 5.185
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.82 SJR 2.883 SNIP 1.247
Web of Science (2014): Impact factor 4.378
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.01 SJR 2.747 SNIP 1.159
NuSTAR observations of Mrk 766: distinguishing reflection from absorption

We present two new NuSTAR observations of the narrow line Seyfert 1 (NLS1) galaxy Mrk 766 and give constraints on the two scenarios previously proposed to explain its spectrum and that of other NLS1s: relativistic reflection and partial covering. The NuSTAR spectra show a strong hard (>15 keV) X-ray excess, while simultaneous soft X-ray coverage of one of the observations provided by XMM-Newton constrains the ionised absorption in the source. The pure reflection model requires a black hole of high spin (a > 0.92) viewed at a moderate inclination (i=46° +1°/−4°). The pure partial covering...
model requires extreme parameters: the cut-off of the primary continuum is very low (22^{+7}_{-5}\text{keV}) in one observation and the intrinsic X-ray emission must provide a large fraction (75\%) of the bolometric luminosity. Allowing a hybrid model with both partial covering and reflection provides more reasonable absorption parameters and relaxes the constraints on reflection parameters. The fractional variability reduces around the iron K band and at high energies including the Compton hump, suggesting that the reflected emission is less variable than the continuum.
Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun

Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet interactions and, hence, a prevalence of either eccentric cool Jupiters or hot Jupiters with circularized orbits. Although the samples are small and exhibit variations in their metallicities, suggesting that numerous processes other than metallicity affect the formation of planetary systems, the data in hand suggests that Jupiter analogs and terrestrial-sized planets form around stars with average metallicities close to solar, whereas high-metallicity systems preferentially host eccentric cool Jupiter or hot Jupiters, indicating that higher metallicity systems may not be favorable for the formation of planetary systems akin to the Solar System.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Lund University, Harvard-Smithsonian Center for Astrophysics, University of Copenhagen, Columbia University
Mass balance of the Antarctic Ice Sheet from 1992 to 2017

The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

General information
State: Published
Organisations: National Space Institute, Geodynamics, Geodesy, Geological Survey of Denmark and Greenland, Danish Meteorological Institute
Pages: 219-222
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Nature
Volume: 558
Issue number: 7709
ISSN (Print): 1476-4687
Ratings:
BFI (2018): BFI-level 3
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.59
Web of Science (2017): Impact factor 19.181
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.33
Web of Science (2016): Impact factor 19.304
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 14.38
Web of Science (2015): Impact factor 17.184
Web of Science (2015): Indexed yes
Measured Performance of Improved Cross Frequency Algorithm for Detection of RFI from DTV

Ku-band is used for measuring ocean wind velocities from meteorological satellites. Ku-band is also used for broadcasting DirectTV signals from satellites over the United States. The reflection of these signals are seen as RFI by the meteorological satellites and algorithms for detecting and blanking natural signals affected by RFI have to be developed. This paper presents a new algorithm targeted for detecting these DirectTV signals. The algorithm is implemented in firmware and its performance measured using a bread-board real time RFI processor developed for spaceborne radiometers and the DTU Space Ku-band radiometer POLRAD. It is shown that the new algorithm has a better performance than the traditional cross frequency algorithm for wideband RFI. It is also shown that the traditional cross frequency algorithm has a better performance than the new with respect to narrowband RFI. The new algorithm can thus augment but not substitute the tradition cross frequency algorithm.

General information
State: Published
Organisations: National Space Institute, Microwaves and Remote Sensing, Harp Technologies Ltd., ESTEC
Pages: 62-66
Publication date: 2018
Monitoring of surface water resources in East Africa using CryoSat-2 radar altimetry and Sentinel-1 SAR imagery

General information
State: Published
Organisations: Department of Environmental Engineering, Air, Land & Water Resources, National Space Institute, Geodesy, DHI GRAS
Contributors: Kittel, C. M. M., Jiang, L., Tøttrup, C., Nielsen, K., Bauer-Gottwein, P.
Number of pages: 1
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Geophysical Research Abstracts
Volume: 20
Article number: EGU2018-6406
ISSN (Print): 1607-7962
Ratings:
Web of Science (2014): Indexed yes
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
BFI (2009): BFI-level 1
Original language: English
Electronic versions:
EGU2018_6406.pdf
Source: PublicationPreSubmission
Source-ID: 146417735
Research output: Research - peer-review › Conference abstract in journal – Annual report year: 2018

Monitoring Riverscapes with Unmanned Airborne Vehicles

General information
State: Published
Organisations: Department of Environmental Engineering, Air, Land & Water Resources, Environmental Fate & Effect of Chemicals, National Space Institute, Geodesy, Astrophysics and Atmospheric Physics, Orbicon, Drone Systems ApS, DHI, Region Hovedstaden, Region Syddanmark, Vejle County, Technical University of Denmark, Photrack AG
Pages: 12-12
Publication date: 2018

Host publication information
Title of host publication: Danish Water Forum Annual Water Conference 2018 - abstract book
Place of publication: Lyngby, Denmark
Publisher: Danish Water Forum
Electronic versions:
Abstract book
Multi-Beam Focal Plane Arrays with Digital Beamforming for High Precision Space-Borne Ocean Remote Sensing

The present-day ocean remote sensing instruments that operate at low microwave frequencies are limited in spatial resolution and do not allow for monitoring of the coastal waters. This is due to the difficulties of employing a large reflector antenna on a satellite platform, and generating high-quality pencil beams at multiple frequencies. Recent advances in digital beamforming focal-plane-arrays (FPAs) have been exploited in the current work to overcome the above problems. A holistic design procedure for such novel multi-beam radiometers has been developed, where (i) the antenna system specifications are derived directly from the requirements to oceanographic surveys for future satellite missions; and (ii) the numbers of FPA elements/receivers are determined through a dedicated optimum beamforming procedure minimizing the distance to coast. This approach has been applied to synthesize FPAs for two alternative radiometer systems: a conical scanner with an off-set parabolic reflector, and stationary wide-scan torus reflector system; each operating at C, X and Ku bands. Numerical results predict excellent beam performance for both systems with as low as 0.14 % total received power over the land.

General information
State: Published
Organisations: National Space Institute, Microwaves and Remote Sensing, Chalmers University of Technology, TICRA, European Space Agency - ESA
Contributors: Iupikov, O. A., Ivashina, M. V., Skou, N., Cappellin, C., Pontoppidan, K., van 't Klooster, C. G. M.
Pages: 737 - 748
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Antennas and Propagation
Volume: 66
Issue number: 2
ISSN (Print): 0018-926X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.65 SJR 1.309 SNIP 2.244
Web of Science (2017): Impact factor 4.13
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.8 SJR 1.226 SNIP 2.013
Web of Science (2016): Impact factor 2.957
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.48 SJR 1.743 SNIP 2.432
Web of Science (2015): Impact factor 2.053
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.36 SJR 1.766 SNIP 2.56
Web of Science (2014): Impact factor 2.181
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.65 SJR 1.377 SNIP 2.219
Web of Science (2013): Impact factor 2.459
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.63 SJR 1.244 SNIP 2.264
Web of Science (2012): Impact factor 2.332
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
New Magnetic Anomaly Map of the Antarctic

The second generation Antarctic magnetic anomaly compilation (ADMAP-2) for the region south of 60oS includes some 3.5 million line-km of aeromagnetic and marine magnetic data that more than doubles the initial map's near-surface database. For the new compilation, the magnetic datasets were corrected for the International Geomagnetic Reference Field, diurnal effects, and high-frequency errors, and levelled, gridded, and stitched together. The new magnetic data further constrain the crustal architecture and geological evolution of the Antarctic Peninsula and the West Antarctic Rift System in West Antarctica, as well as Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica, and the circumjacent oceanic margins. Overall, the magnetic anomaly compilation helps unify disparate regional geologic and geophysical studies by providing new constraints on major tectonic and magmatic processes that affected the Antarctic from Precambrian to Cenozoic times.

General information
State: Published
Organisations: National Space Institute, Geodynamics, Korea Polar Research Institute, Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany, University of Western Australia, All-Russian Scientific Research Institute for Geology and Mineral Resources of the World Ocean, British Antarctic Survey, The Ohio State University, University of Texas at Austin, Polar Marine Geosurvey Expedition, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, United States Geological Survey, Columbia University, University of Genoa, Instituto Antartico Argentino, Universidad De Granada, Instituto Geologico y Minero de Espana, Kongju National University, NASA Goddard Space Flight Center, National Institute of Polar Research, University of Tasmania

Number of pages: 13
Pages: 6437-6449
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Geophysical Research Letters
Volume: 45
Issue number: 13
ISSN (Print): 0094-8276

Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.51 SJR 2.657 SNIP 1.429
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.35 SJR 2.819 SNIP 1.495
Web of Science (2016): Impact factor 4.253
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.27 SJR 3.144 SNIP 1.496
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.26 SJR 3.135 SNIP 1.552
Web of Science (2014): Impact factor 4.196
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.45 SJR 3.24 SNIP 1.728
Web of Science (2013): Impact factor 4.456
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.82 SJR 3.122 SNIP 1.577
Web of Science (2012): Impact factor 3.982
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.79 SJR 2.935 SNIP 1.556
Web of Science (2011): Impact factor 3.792
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.934 SNIP 1.416
Web of Science (2010): Impact factor 3.505
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.742 SNIP 1.387
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
NICER Discovers mHz Oscillations in the "Clocked" Burster GS 1826−238

We report the discovery with the Neutron Star Interior Composition Explorer (NICER) of mHz X-ray brightness oscillations from the "clocked burster" GS 1826−238. NICER observed the source in the periods 2017 June 20–29, July 11–13, and September 9–15, for a total useful exposure of 34 ks. Two consecutive dwells obtained on 2017 September 9 revealed highly significant oscillations at a frequency of 8 mHz. The fractional, sinusoidal modulation amplitude increases from 0.7% at 1 keV to ≈2% at 6 keV. Similar oscillations were also detected at lower significance in three additional dwells. The oscillation frequency and amplitude are consistent with those of mHz QPOs reported in other accreting neutron star systems. A thermonuclear X-ray burst was also observed on 2017 June 22. The burst properties and X-ray colors are both consistent with GS 1826 being in a soft spectral state during these observations, findings that are confirmed by ongoing monitoring with MAXI and SWIFT-BAT. Assuming that the mHz oscillations are associated with blackbody emission from the neutron star surface, modeling of the phase-resolved spectra shows that the oscillation is consistent with being produced by modulation of the temperature component of this emission. In this interpretation, the blackbody normalization, proportional to the emitting surface area, is consistent with being constant through the oscillation cycle. We place the observations in the context of the current theory of marginally stable burning and briefly discuss the potential for constraining neutron star properties using mHz oscillations.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, NASA Goddard Space Flight Center, University of Arizona, University of Michigan, University of Maryland, SRON Netherlands Institute for Space Research, Istanbul University, Universite de Toulouse, Massachusetts Institute of Technology, University of Southampton
Number of pages: 12
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astrophysical Journal
Volume: 865
Issue number: 1
Article number: 63
ISSN (Print): 0004-637X
Ratings:
NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062–6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is $9.12 \times 10^{-8} M_\odot$, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M_\odot for a neutron star mass from 1.2 to 2 M_\odot. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M_\odot and 19°.
Numerical insights into the early stages of nanoscale electrodeposition: nanocluster surface diffusion and aggregative growth

Fundamental understanding of the early stages of electrodeposition at the nanoscale is key to address the challenges in a wide range of applications. Despite having been studied for decades, a comprehensive understanding of the whole process is still out of reach. In this work, we introduce a novel modelling approach that couples a finite element method (FEM) with a random walk algorithm, to study the early stages of nanocluster formation, aggregation and growth, during electrochemical deposition. This approach takes into account not only electrochemical kinetics and transport of active species, but also the surface diffusion and aggregation of adatoms and small nanoclusters. The simulation results reveal that the relative surface mobility of the nanoclusters compared to that of the adatoms plays a crucial role in the early growth stages. The number of clusters, their size and their size dispersion are influenced more significantly by nanocluster mobility than by the applied overpotential itself. Increasing the overpotential results in shorter induction times and leads to aggregation prevalence at shorter times. A higher mobility results in longer induction times, a delayed transition from nucleation to aggregation prevalence, and as a consequence, a larger surface coverage of smaller clusters with a smaller size dispersion. As a consequence, it is shown that a classical first-order nucleation kinetics equation cannot describe the evolution of the number of clusters with time, N(t), in potentiostatic electrodeposition. Instead, a more accurate representation of N(t) is provided. We show that an evaluation of N(t), which neglects the effect of nanocluster mobility and aggregation, can induce errors of several orders of magnitude in the determination of nucleation rate constants. These findings are extremely important towards evaluating the elementary electrodeposition processes, considering not only adatoms, but also nanoclusters as building blocks.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Vrije Universiteit Brussel
Contributors: Mamme, M. H., Kohn, C., Deconinck, J., Ustarroz, J.
Number of pages: 16
Pages: 7194-7209
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Nanoscale
Volume: 10
Issue number: 15
ISSN (Print): 2040-3364
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.57 SJR 2.934 SNIP 1.442
Web of Science (2017): Impact factor 7.233
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.46 SJR 2.789 SNIP 1.441
Web of Science (2016): Impact factor 7.367
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.97 SJR 2.77 SNIP 1.542
Web of Science (2015): Impact factor 7.76
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.64 SJR 2.646 SNIP 1.649
Web of Science (2014): Impact factor 7.394
Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability

The marine portion of the West Antarctic Ice Sheet (WAIS) in the Amundsen Sea Embayment (ASE) accounts for one-fourth of the cryospheric contribution to global sea-level rise and is vulnerable to catastrophic collapse. The bedrock response to ice mass loss, glacial isostatic adjustment (GIA), was thought to occur on a time scale of 10,000 years. We used new GPS measurements, which show a rapid (41 millimeters per year) uplift of the ASE, to estimate the viscosity of the mantle underneath. We found a much lower viscosity \(4 \times 10^{18}\) pascal-second than global average, and this shortens the GIA response time scale from tens to hundreds of years. Our finding requires an upward revision of ice mass loss from gravity data of 10% and increases the potential stability of the WAIS against catastrophic collapse.

General information
State: Published
Organisations: National Space Institute, Geodynamics, Department of Applied Mathematics and Computer Science, Geodesy, Technical University of Denmark, Ohio University, University of Washington, University of Colorado Boulder, University of Texas at Austin, University of Memphis, Colorado State University, Pennsylvania State University, Washington University St. Louis
Pages: 1335-1339
Publication date: 2018
Peer-reviewed: Yes

Publication Information
Journal: Science
Volume: 360
Issue number: 6395
ISSN (Print): 0036-8075
Ratings:
BFI (2018): BFI-level 3
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 15.85 SJR 14.142 SNIP 7.154
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 14.39 SJR 13.745 SNIP 7.547
Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-
Algol system with a B7 donor star of mass in a 72-day orbit around an A0 accreting star of mass. The disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated a campaign of photometric and spectroscopic observations for MWC 882 to measure the dynamical masses of the components and to monitor the system during eclipse. We found the photometric eclipse to be gray to ≈1%. We found that the primary star exhibits spectroscopic signatures of active accretion, and we observed gas absorption features from the disk during eclipse. We suggest that MWC 882 initially consisted of a ≈3.6 M⊙ donor star transferring mass via Roche lobe overflow to a ≈2.1 M⊙ accretor in a ≈7-day initial orbit. Through angular momentum conservation, the donor star is pushed outward during mass transfer to its current orbit of 72 days. The observed state of the system corresponds with the donor star having left the red giant branch ~0.3 Myr ago, terminating active mass transfer. The present disk is expected to be short-lived (10^2 yr) without an active feeding mechanism, presenting a challenge to this model.
On the 2018 Outburst of the Accreting Millisecond X-Ray Pulsar Swift J1756.9–2508 As Seen with NICER

We report on the coherent timing analysis of the 182 Hz accreting millisecond X-ray pulsar Swift J1756.9–2508 during its 2018 outburst as observed with the Neutron Star Interior Composition Explorer (NICER).

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, NASA Goddard Space Flight Center, University of Southampton, Universite de Toulouse, Naval Research Laboratory, Massachusetts Institute of Technology
Number of pages: 7
Publication date: 2018
Peer-reviewed: Yes

Publication Information
Journal: Astrophysical Journal
Volume: 864
Issue number: 1
Article number: 14
ISSN (Print): 0004-637X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.41
Web of Science (2017): Impact factor 8.561
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.26
Optical instrument design of the high-energy x-ray probe (HEX-P)

The High-Energy X-ray Probe (HEX-P) is a probe-class next-generation high-energy X-ray mission concept that will vastly extend the reach of broadband X-ray observations. Studying the 2-200 keV energy range, HEX-P has 40 times the sensitivity of any previous mission in the 10-80 keV band, and will be the first focusing instrument in the 80-200 keV band. A successor to the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer launched in 2012, HEX-P addresses key NASA science objectives, and will serve as an important complement to ESA's L-class Athena mission. HEX-P will utilize multilayer coated X-ray optics, and in this paper we present the details of the optical design, and discuss the multilayer prescriptions necessary for the reflection of hard X-ray photons. We consider multiple module designs with the aim of investigating the tradeoff between high- and low-energy effective area, and review the technology development necessary to reach that goal within the next decade.
Optimal estimation of sea surface temperature from AMSR-E

The Optimal Estimation (OE) technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI) to retrieve subskin Sea Surface Temperature (SST) from AQUA's Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). A comprehensive matchup database with drifting buoy observations is used to develop and test the OE setup. It is shown that it is essential to update the first guess atmospheric and oceanic state variables and to perform several iterations to reach an optimal retrieval. The optimal number of iterations is typically three to four in the current setup. In addition, updating the forward model, using a multivariate regression model is shown to improve the capability of the forward model to reproduce the observations. The average sensitivity of the OE retrieval is 0.5 and shows a latitudinal dependency with smaller sensitivity for cold waters and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most consistent. The corresponding mean uncertainty is estimated to 0.48 K including the in situ and sampling uncertainties. An independent validation against Argo observations from 2009 to 2011 shows an average difference of 0.01 K, a standard deviation of 0.50 K and a mean uncertainty of 0.47 K, when considering the best 62% of retrievals. The satellite versus in situ discrepancies are highest in the dynamic oceanic regions due to the large satellite footprint size and the associated sampling effects. Uncertainty estimates are available for all retrievals and have been validated to be accurate. They can thus be used to obtain very good retrieval results. In general, the results from the OE retrieval are very encouraging and demonstrate that passive microwave observations provide a valuable alternative to infrared satellite observations for retrieving SST.
Performance and stability of mirror coatings for the ATHENA mission

We present the expected coating performance based on design and simulations, tested coating performance evaluated by means of X-ray reflectometry and short and long term stability of several materials considered as coating options for the X-ray mirrors of the ATHENA mission. As part of this study we also report on the compatibility of the X-ray reflecting coatings to the industrial processes involved in the assembly of mirror modules using Silicon Pore Optics technology.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Center for Electron Nanoscopy, Technical University of Denmark, Cosine Measurement Systems, Physikalisch-Technische Bundesanstalt, European Space Agency - ESA
Number of pages: 11
Publication date: 2018

Host publication information
Title of host publication: Proceedings of Spie
Publisher: SPIE - International Society for Optical Engineering
Article number: 106993K
Keywords: ATHENA, SPO, Coating design, X-ray mirrors, XRR, Multilayer, X-ray optics, Ir/B4C, Ir/SiC, Ir, Effective area
Electronic versions: 106993K.pdf
Planck intermediate results: LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect

Using the Planck full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the Planck foreground-cleaned "2D-ILC" maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters is $<(\Delta T/T)^2> = (1.64 \pm 0.48) \times 10^{-11}$. However, comparison with analytic calculations and simulations suggest that around 0.7 σ of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be $<(\Delta T/T)^2> = (1.35 \pm 0.48) \times 10^{-11}$, which gives a detection at the 2.8 σ level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is $(\upsilon^2) = (123 000 \pm 71 000) \text{ km s}^{-1} \text{ h}^{-1}$, which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of 600 h^{-1} Mpc. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure.

General information
State: Published
Organisations: Astrophysics and Atmospheric Physics, National Space Institute, Universite Paris-Saclay, University of Oslo, University of Cambridge, Universite de Toulouse, University of the Western Cape, University of Padova, Indian Institute of Science Education and Research Thiruvanantapuram, University of Manchester, Universite Pierre et Marie Curie, University of Milan, Polish Academy of Sciences, University of Toronto, University of California at Berkeley, University of Ferrara, Cardiff University, University of Sussex, Princeton University, Universite Grenoble Alpes, University of British Columbia, California Institute of Technology, University of Rome La Sapienza, Universite Paris 7, Imperial College London, Max-Planck-Institut fur Astrophysik, PSL Research University, University of Stellenbosch, INAF - OAS Bologna, Istituto Nazionale di Astrofisica, Haferford College, Universite Paris-Sud, Heidelberg University, Radboud University Nijmegen, Agenzia Spaziale Italiana, University Paris Diderot - Paris 7, Instituto Astrofisico de Canarias, University of Helsinki, Universita di Padova, Max Planck Institute, ESTEC, INAF – Osservatorio Astronomico di Trieste, Università degli Studi di Milano, INAF, Istituto di Radioastronomia, European Space Agency - ESA, University of Oviedo, Universidad de Cantabria, University of Rome Tor Vergata, National Institute for Astrophysics, University of California at Santa Barbara, International School for Advanced Studies, CSIC, CNR, Institut d’Astrophysique de Paris, INFN, CNRS
Number of pages: 17
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astronomy and Astrophysics
Volume: 617
Article number: A48
ISSN (Print): 0004-6361
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68 SJR 2.234 SNIP 1.199
Web of Science (2016): Impact factor 5.014
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.5 SJR 2.545 SNIP 1.224
Web of Science (2015): Impact factor 5.185
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.82 SJR 2.883 SNIP 1.247
Web of Science (2014): Impact factor 4.378
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.01 SJR 2.747 SNIP 1.159
Web of Science (2013): Impact factor 4.479
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.14 SJR 2.903 SNIP 1.36
Web of Science (2012): Impact factor 5.084
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.42 SJR 2.737 SNIP 1.322
Web of Science (2011): Impact factor 4.587
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.849 SNIP 1.424
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.976 SNIP 1.438
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.907 SNIP 1.291
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.861 SNIP 1.333
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.646 SNIP 1.4
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.265 SNIP 1.338
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.862 SNIP 1.448
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.157 SNIP 1.362
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.845 SNIP 1.35
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.607 SNIP 0.736
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.439 SNIP 1.04
Web of Science (2000): Indexed yes
Planck intermediate results - XV. A study of anomalous microwave emission in Galactic clouds (Corrigendum)

There is a typographical error in the unit of the 250 column of Table 3 of Planck Collaboration XVI (2014), resulting in all 250 values listed being a factor of 10 smaller than they should be. Corresponding author: C. Dickinson, e-mail: clive.dickinson@manchester.ac.uk The values have been multiplied by 104 and not 105 as listed in the previously published version. All the values relating to τ_{250} in the main body of text and figures remain correct.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Innovation and Research-based consultancy, University of Copenhagen
Number of pages: 1
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astronomy & Astrophysics
Volume: 610
Article number: C1
ISSN (Print): 0004-6361
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68 SJR 2.234 SNIP 1.199
Web of Science (2016): Impact factor 5.045
Web of Science (2016): Indexed yes
Quantifying Atlantic Water transport to the Nordic Seas by remote sensing

In this study the variability of Atlantic Water (AW) entering the Nordic Seas from the North Atlantic through the passage between Iceland, the Faroe Islands and Scotland has been investigated. The poleward transport of this warm AW is a key component in maintaining a relatively mild climate in the northwestern Europe. Satellite remote sensing datasets from altimetry and the Gravity field and steady state Ocean Circulation Explorer (GOCE) mission, in combination with surface drifters, fixed current meter, and hydrographic data are used. The high-resolution mean dynamic topography (MDT) is shown to resolve the time-invariant surface currents in the inflow region. In addition to the improved MDT, we take benefit of the new reprocessed sea level anomaly data in the estimation of absolute dynamic topography. Analysis of the monthly surface velocities from 1993 to 2016 demonstrates significant influence of the large scale atmospheric forcing associated with the North Atlantic Oscillation (NAO). Furthermore, a significant increase in surface velocities along the slope current, front current and the Norwegian Coastal Current are found during winter. Finally, combining altimetry with hydrographic data, we demonstrate that the variability in surface velocities of the inflow region is also reflected in the deeper layers, and that altimetry therefore can be used to monitor the variability of the poleward transport of AW in this region.

General information
State: Published
Organisations: Geodesy, National Space Institute, Bjerknes Centre for Climate Research, University of Bergen
Number of pages: 12
Pages: 758-769
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing of Environment
Volume: 216
ISSN (Print): 0034-4257
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.16 SJR 3.121 SNIP 2.5
Web of Science (2017): Impact factor 6.457
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.92 SJR 3.035 SNIP 2.956
Web of Science (2016): Impact factor 6.265
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.27 SJR 3.697 SNIP 3.044
Web of Science (2015): Impact factor 5.881
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.21 SJR 3.881 SNIP 3.477
Web of Science (2014): Impact factor 6.393
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.6 SJR 3.148 SNIP 2.982
Web of Science (2013): Impact factor 4.769
ISI indexed (2013): ISI indexed yes
Real-Time RFI Processor for the Next Generation Satellite Radiometers

Anthropogenic Radio Frequency Interference (RFI) within radiometer bands is a serious problem in passive microwave remote sensing. Since this problem is ever-increasing, the next generation satellite radiometers will require efficient methods to mitigate the effects of RFI. In this paper, we present one solution: a spaceborne RFI processor to detect and blank the RFI in real time. The processor was designed to be compatible with the Microwave Imager (MWI) instrument, 18.7 GHz channel, onboard the European MetOp Second Generation satellite system. The developed RFI processor applies the following detection algorithms: (1) anomalous amplitude detection, (2) kurtosis, and (3) cross-frequency. In the processing, the data are divided into sub-samples in time and frequency with fine resolution. The RFI processor can detect and filter out RFI with this fine resolution in real time and then integrate the clean (non-contaminated) subsamples over time and frequency. Thus, a cleaned version of the radiometer data can be downlinked at traditional low data rate. The processing is implemented in a reprogrammable FPGA with high processing capacity, which provides high flexibility. The applied processing bandwidth is 200 MHz (+ 25 MHz transition bands at both sides). The measured performance of the RFI processor corresponds to the simulations and good overall detection capability has been achieved for narrow-band
RFI. The power consumption of the RFI processor is approx. 12 W (at room temperature) and the mass is approx. 1 kg.

Relationship between PC index and magnetospheric field-aligned currents measured by Swarm satellites

Abstract The relationship between the magnetospheric field-aligned currents (FAC) monitored by the Swarm satellites and the magnetic activity PC index (which is a proxy of the solar wind energy incoming into the magnetosphere) is examined. It is shown that current intensities measured in the R1 and R2 FAC layers at the poleward and equatorward boundaries of the auroral oval are well correlated, the R2 currents being evidently secondary in relation to R1 currents and correlation in the dawn and dusk oval sectors being better than in the noon and night sectors. There is evident relationship between the PC index and the intensity of field-aligned currents in the R1 dawn and dusk layers: increase of FAC intensity in the course of substorm development is accompanied by increasing the PC index values. Correlation between PC and FAC intensities in the R2 dawn and dusk layers is also observed, but it is much weaker. No correlation is observed between PC and field-aligned currents in the midnight as well as in the noon sectors ahead of the substorm expansion phase. The results are indicative of the R1 field-aligned currents as a driver of the polar cap magnetic activity (PC index) and currents in the R2 layer.

General information
State: Published
Organisations: National Space Institute, Microwaves and Remote Sensing, Harp Technologies Ltd., ESTEC
Pages: 71-76
Publication date: 2018

Host publication information
Title of host publication: Proceedings of the 2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)
Publisher: IEEE
ISBN (Electronic): 978-1-5386-5015-8
Keywords: Interference suppression, Radiometry, Remote sensing, Signal analysis, Signal processing
DOIs: 10.1109/MICRORAD.2018.8430725
Research output: Research - peer-review > Article in proceedings – Annual report year: 2018

General information
State: Published
Organisations: National Space Institute, Geomagnetism, Arctic and Antarctic Research Institute
Contributors: Troshichev, O., Sormakov, D., Behlke, R.
Pages: 37–47
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Atmospheric and Solar-Terrestrial Physics
Volume: 168
ISSN (Print): 1364-6826
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.52 SJR 0.696 SNIP 0.913
Web of Science (2017): Impact factor 1.492
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.39 SJR 0.749 SNIP 0.845
Web of Science (2016): Impact factor 1.326
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.48 SJR 0.913 SNIP 0.947
Web of Science (2015): Impact factor 1.463
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.45 SJR 0.959 SNIP 0.954
Web of Science (2014): Impact factor 1.474
BFI (2013): BFI-level 1
Low-lying coastal communities face almost insurmountable challenges from floods and climate change. Research work on adaptation and mitigation particularly emphasizes on cities and mega-cities as a natural consequence of their agglomeration of people and assets. Less focus is put on smaller coastal communities and their challenges, one of which is a lack of local expertise and knowledge. Adaptation to climate change is often a local governance level task, however. Co-work between municipal and national authorities, the utility company, research, business, consultants and citizens has resulted in a common framework to address and deal with water-related challenges in a Danish coastal community. From an assessment of combined impacts of climate change (i.e. sea level rise and storm surges, precipitation and cloudbursts and associated groundwater level responses) and stresses from degrading sewer systems and land subsidence, impact zones are mapped. The multi-player, end-user defined work transcends sectors and builds capacity by sharing data and knowledge. It mainstreams climate change issues into business, management, planning and early warning; the overall goal is an adaptation strategy unfolded from stakeholder involvement and responsibility, cost-effective decision making, climate-related asset management processes and a holistic livable cities approach to this highly vulnerable coastal community. The collaboration and common framework enable the actors to articulate need of information and establish feedback mechanisms between local level work and e.g. sea level research and climate services.
Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.
Scale separated low viscosity dynamos and dissipation within the Earth's core
The mechanism by which the Earth's magnetic field is generated is thought to be thermal convection in the metallic liquid iron core. Here we present results of a suite of self-consistent spherical shell computations with ultra-low viscosities that replicate this mechanism, but using diffusivities of momentum and magnetic field that are notably dissimilar from one another. This leads to significant scale separation between magnetic and velocity fields, the latter being dominated by small scales. We show a zeroth order balance between the azimuthally-averaged parts of the Coriolis and Lorentz forces at large scales, which occurs when the diffusivities of magnetic field and momentum differ so much, as in our model. Outside boundary layers, viscous forces have a magnitude that is about one thousandth of the Lorentz force. In this dynamo dissipation is almost exclusively Ohmic, as in the Earth, with convection inside the so-called tangent cylinder playing a crucial role; it is also in the "strong field" regime, with significantly more magnetic energy than kinetic energy (as in the Earth). We finally show a robust empirical scaling law between magnetic dissipation and magnetic energy.

General information
State: Published
Organisations: National Space Institute, Geomagnetism, Swiss Federal Institute of Technology, Swiss National Supercomputing Centre
Contributors: Sheyko, A., Finlay, C., Favre, J., Jackson, A.
Number of pages: 7
Publication date: 2018
Science with e-ASTROGAM: A space mission for MeV–GeV gamma-ray astrophysics

e-ASTROGAM ("enhanced ASTROGAM") is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our
Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics

Pages: 1-106
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of High Energy Astrophysics
Volume: 19
ISSN (Print): 2214-4048
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 2.88 SJR 1.288 SNIP 0.793
Web of Science (2017): Impact factor 2.282
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.92 SJR 1.981 SNIP 1.444
Scopus rating (2015): CiteScore 8.33 SJR 3.569 SNIP 3.038
Original language: English
DOIs:
10.1016/j.jheap.2018.07.001
Source: Bibtex
Source-ID: urn:654ef9fee9ac86a6c8b0a8f9253c9845
Research output: Research - peer-review ; Journal article – Annual report year: 2018

Searching for Short GRBs in Soft Gamma Rays with INTEGRAL/PICsIT
With gravitational wave (GW) detections by the LIGO/Virgo collaboration over the past several years, there is heightened interest in gamma-ray bursts (GRBs), especially “short” GRBs (T <2s). The high-energy PICsIT detector (~0.2 ─ 10 MeV) on-board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) is able to observe sources out to approximately 70° off-axis, making it a soft gamma-ray, all-sky monitor for impulsive events, such as SGRBs. Because SGRBs typically have hard spectra with peak energies of a few hundred keV, PICsIT with its ~ 3000 cm collecting area is able to provide spectral information about these sources at soft gamma-ray energies. We have begun a study of PICsIT data for faint SGRB similar to the one associated with the binary neutron star (BNS) merger GW170817,
and also are preparing for future GW triggers by developing a real-time burst analysis for PICsIT. Searching the PICsIT data for significant excesses during ~30 min-long pointings containing times of SGRBs, we have been able to differentiate between SGRBs and spurious events. Also, this work allows us to assess what fraction of reported SGRBs have been detected by PICsIT, which can be used to provide an estimate of the number of GW BNS events seen by PICsIT during the next LIGO/Virgo observing run starting in Fall 2018.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, National Institute for Astrophysics, University of Geneva, Max-Planck-Institut für extraterrestrische Physik, Centro de Astrobiología, University College Dublin, The Research Institute in Astrophysics and Planetology, French Alternative Energies and Atomic Energy Commission, RAS - Space Research Institute, European Space Agency - ESA
Number of pages: 2
Publication date: 2018
Peer-reviewed: Yes
Event: Abstract from 231st AAS Meeting, National Harbor, United States.
Electronic versions:
Searching_for_Short_GRBs_in_Soft_Gamma_Rays_with_INTEGRAL_PICsIT.pdf
Source: Bibtex
Source-ID: urn:2922dad325853a2e55630f091bd06dd9
Research output: Research - peer-review Conference abstract for conference Annual report year: 2018

Seasonal ice dynamics of the Northeast Greenland Ice Stream
Previous studies about the seasonal ice dynamics of the marine-terminating glaciers of Greenland and their dynamic mass losses are limited by the temporal resolution of the existing data. Sentinel-1 radar mission opens the possibility for continuous monitoring of glaciers with very high spatial and temporal details. This study focus on the Northeast Greenland Ice Stream (NEGIS), which consists of three main outlets, 79 North glacier (79N), Zachariae Isastream (ZI) and Storstrømmen Glacier (SG). While both 79 North and Storstrømmen have floating tongues, Zachariae Isastream is mostly grounded. In this study, we present the seasonal ice dynamics of these three outlets of NEGIS as well as their implications on bedrock displacements during 2015-2017. We derive surface velocities using SAR offset tracking applied over Sentinel-1 SAR data. We use radar backscatter from Sentinel SAR data to mark the onset of surface melt and the extent of the melt season. Moreover, we include the changes in ice front from Sentinel SAR data, surface elevation changes from CryoSat-2 data and GPS derived bedrock displacements in our analysis. We find that among these outlets, ZI is the fastest varying between 5.6 m/day and 7.0 m/day during 2015-2017. 79 N fluctuates between 3.6 m/day and 4.2 day, while the velocity of SG is less than 1 m/day throughout our observation period. All three of them speed up with the onset of surface melt and attain maximum velocity in the middle of the melt season. Afterwards they slowdown and attain minimum velocity at the end of the melt season followed by either moderate winter speedup (ZI) or stable flow (79 N, SG). This indicates the surface melt induced changes in the subglacial hydrology governs the seasonal flow dynamics of these outlets. We also notice dynamic thinning from CryoSat-2 data and corresponding elastic displacements (detected by GPS) of the bedrock due to ice mass unloading of the crust.

General information
State: Published
Organisations: National Space Institute, Geodesy, Geodynamics, Microwaves and Remote Sensing, University of Copenhagen
Contributors: Vijay, S., Khan, S. A., Simonsen, S. B., Kusk, A., Solgaard, A. M., Bjørk, A. A.
Number of pages: 1
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Geophysical Research Abstracts
Volume: 20
Article number: EGU2018-5063
ISSN (Print): 1607-7962
Ratings:
Web of Science (2014): Indexed yes
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
Silicon pore optics mirror module production and testing

Silicon Pore Optics (SPO) has been established as a new type of x-ray optics that enables future x-ray observatories such as Athena. SPO is being developed at cosine with the European Space Agency (ESA) and academic and industrial partners. The optics modules are lightweight, yet stiff, high-resolution x-ray optics, that shall allow missions to reach an unprecedentedly large effective area of several square meters, operating in the 0.2 - 12 keV band with an angular resolution better than 5 arc seconds. In this paper we are going to discuss the latest generation production facilities and we are going to present results of the production of mirror modules for a focal length of 12 m, including x-ray test results.

Simulating ice thickness and velocity evolution of Upernavik Isstrom 1849-2012 by forcing prescribed terminus positions in ISSM

Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al., 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrom (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70% of the total mass loss induced by prescribed change in terminus position. The remaining 30% of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal ob-served terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.
Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements

We present a new climatological model of the ionospheric current system, determined from magnetic measurements taken by the CHAMP and Swarm satellites. The model describes the horizontal currents in the ionosphere, below the satellites, and the field-aligned (Birkeland) currents that connect the ionosphere with the magnetosphere. The model provides ionospheric current values at any location as continuous functions of solar wind speed, interplanetary magnetic field (IMF), dipole tilt angle, and the F10.7 index of solar flux. Geometric distortions due to variations in the Earth's main magnetic field are taken into account, thus allowing for precise comparisons between the two hemispheres. The model is the first of its kind to describe the full 3D electric currents, and not only the field-aligned or the equivalent horizontal current. We use this capability to demonstrate a key difference between seasons: During winter, the total horizontal current is almost entirely confined to the auroral oval, for all IMF orientations, where it connects upward and downward Birkeland currents. During more sunlit conditions, the horizontal current extends beyond the auroral oval, and is a sum of currents connecting Birkeland currents and currents that circulate in the ionosphere. The westward electrojet is the only large-scale current structure that is persistent across seasons. Comparison with average convection maps suggests that it is comprised largely of Hall currents, which connect to Birkeland currents in the winter but not in summer.
Spectral and timing studies of 2S 1417-624 during a giant outburst

We present the results obtained from timing and spectral studies of the accretion powered X-ray pulsar 2S 1417-624 during a giant outburst in 2009 by using Rossi X-ray Timing Explorer (RXTE) observations. X-ray pulsations were detected in the light curves obtained from all epochs of observations. The pulsar was found to be spinning-up during the outburst. The pulse profiles were observed to be strongly dependent on photon energy and luminosity. A double peaked profile at lower luminosity evolved into a triple peaked profile at the peak of the outburst which is further reverted back to a double peaked structure during the decay of the outburst. An anti-correlation was also observed between the pulse fraction and the source flux. The 3-70 keV energy spectrum of pulsar was well described with a power law modified with high energy cutoff model along with an iron fluorescence line at 6.4 keV. Based on the evolution of pulse profile, pulse fraction and spectral parameters across observed luminosity, we interpret our results in terms of changes in the pulsar beam configuration from sub-critical to super-critical regimes.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Physical Research Laboratory
Contributors: Gupta, S., Naik, S., Jaisawal, G. K., Epili, P. R.
Number of pages: 9
Pages: 5612-5619
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Monthly Notices of the Royal Astronomical Society
Volume: 479
Issue number: 4
ISSN (Print): 0035-8711
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.54 SJR 2.346 SNIP 0.904
Web of Science (2017): Impact factor 5.194
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.09 SJR 2.388 SNIP 1.134
Web of Science (2016): Impact factor 4.961
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4 SJR 2.701 SNIP 1.165
Web of Science (2015): Impact factor 4.952
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.79 SJR 3.23 SNIP 1.322
Web of Science (2014): Impact factor 5.107
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.1 SJR 3.155 SNIP 1.23
Web of Science (2013): Impact factor 5.226
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.89 SJR 3.283 SNIP 1.392
Web of Science (2012): Impact factor 5.521
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.63 SJR 2.964 SNIP 1.35
Web of Science (2011): Impact factor 4.9
Streamer properties and associated x-rays in perturbed air

Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%–100%, as induced from discharge shock waves. We use acylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%–10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.
STROBE-X: A probe-class mission for X-ray spectroscopy and timing on timescales from microseconds to years

We describe the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X), a probe-class mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over both a broad energy band (0.2-30 keV) and a wide range of timescales from microseconds to years. STROBE-X comprises two narrow-field instruments and a wide field monitor. The soft or low-energy band (0.2-12 keV) is covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid-state detectors with CCD-level (85-175 eV) energy resolution, 100 ns time resolution, and low background rates. This technology has been fully developed for NICER and will be scaled up to take advantage of the longer focal length of STROBE-X. The higher-energy band (2-30 keV) is covered by large-area, collimated silicon drift detectors that were developed for the European LOFT mission concept. Each instrument will provide an order of magnitude improvement in effective area over its predecessor (NICER in the soft band and RXTE in the hard band). Finally, STROBE-X offers a sensitive wide-field monitor (WFM), both to act as a trigger for pointed observations of X-ray transients and also to provide high duty-cycle, high time-resolution, and high spectral-resolution monitoring of the variable X-ray sky. The WFM will boast approximately 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multi-messenger investigations with a large instantaneous field of view. This mission concept will be presented to the 2020 Decadal Survey for consideration.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, U.S. Naval Research Laboratory, NASA Goddard Space Flight Center, Massachusetts Institute of Technology, National Institute for Astrophysics, Universite Paris-Saclay, Institute of Space Sciences, University of Tbingen, University of Alabama in Huntsville, University of Udine, NASA Marshall Space Flight Center, University College London, Georgia Institute of Technology, University of Geneva, Smithsonian Astrophysical Observatory, Wayne State University, Science and Technology Institute (STI), Clemson University, Michigan State University, University of California at Berkeley, Praxis, Inc., University of Michigan
Number of pages: 20
Publication date: 2018

Host publication information
Title of host publication: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
Volume: 10699
Publisher: SPIE - International Society for Optical Engineering
Editors: den Herder, J. A., Nikzad, S., Nakazawa, K.
Article number: 1069919
ISBN (Print): 9781510619517
Keywords: X-ray, STROBE-X, Silicon drift detectors, Neutron stars, Black holes, Collimators
Electronic versions:
1807.01179.pdf
1069919.pdf
DOIs:
10.1117/12.2312257
URLs:
http://arxiv.org/abs/1807.01179
Source: Bibtex
Source-ID: urn:fc6065233d74ee49a5aeb9d434ef0f54
Research output: Research - peer-review ▶ Article in proceedings ▶ Annual report year: 2018

STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and spectroscopy on timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid-state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-
wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument
designs resulting from the GSFC IDL run in November 2017. For the first time, the broad coverage provides simultaneous
study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for
accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of
state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The
combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential
electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk
metallicity of medium to high redshift clusters and nearby compact groups and unprecedented timing investigations of
active galactic nuclei, is also obtained.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, NASA Marshall Space Flight Center,
Naval Research Laboratory, Texas Tech University, Massachusetts Institute of Technology, NASA Goddard Space Flight
Center, Georgia Institute of Technology, University of Geneva, Swinburne Astronomy Online, National Institute for
Astrophysics, Universities Space Research Association, Clemson University, Institute of Space Sciences, University of
Amsterdam, University of California at Berkeley, University College London, University of Alabama in Huntsville
P., Ballantyne, D., Bozzo, E., Brandt, S., Brenneman, L., Christophersen, M., DeRosa, A., Feroci, M., Goldstein, A.,
Hartmann, D., Hernanz, M., McDonald, M., Philips, B., Remillard, R., Stevens, A., Tomsick, J., Watts, A., Wood, K. S.,
Zane, S.
Number of pages: 2
Publication date: 2018
Peer-reviewed: Yes
Event: Abstract from 231st AAS Meeting, National Harbor, United States.
Electronic versions:

Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an
unmanned aerial vehicle
High-quality bathymetric maps of inland water bodies are a common requirement for hydraulic engineering and
hydrological science applications. Remote sensing methods, such as space-borne and airborne multispectral imaging or
lidar, have been developed to estimate water depth, but are ineffective for most inland water bodies, because of the
attenuation of electromagnetic radiation in water, especially under turbid conditions. Surveys conducted with boats
equipped with sonars can retrieve accurate water depths, but are expensive, time-consuming, and unsuitable for
unnavigable water bodies. We develop and assess a novel approach to retrieve accurate and high-resolution bathymetry
maps. We measured accurate water depths using a tethered floating sonar controlled by an unmanned aerial vehicle
(UAV) in a lake and in two different rivers located in Denmark. The developed technique combines the advantages of
remote sensing with the potential of bathymetric sonars. UAV surveys can be conducted also in unnavigable, inaccessible,
or remote water bodies. The tethered sonar can measure bathymetry with an accuracy of ~2.1 % of the actual depth for
observations up to 35 m, without being significantly affected by water turbidity, bed form, or bed material.

General information
State: Published
Organisations: Department of Environmental Engineering, Air, Land & Water Resources, National Space Institute,
Geodesy
Contributors: Bandini, F., Olesen, D. H., Jakobsen, J., Kittel, C. M. M., Wang, S., Garcia, M., Bauer-Gottwein, P.
Number of pages: 17
Pages: 4165-4181
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Hydrology and Earth System Sciences
Volume: 22
Issue number: 8
ISSN (Print): 1027-5606
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Temperature trends with reduced impact of ocean air temperature

Temperature data 1900–2010 from meteorological stations across the world have been analyzed and it has been found that all land areas generally have two different valid temperature trends. Coastal stations and hill stations facing ocean winds are normally more warm-trended than the valley stations that are sheltered from dominant oceans winds.

Thus, we found that in any area with variation in the topography, we can divide the stations into the more warm trended ocean air-affected stations, and the more cold-trended ocean air-sheltered stations. We find that the distinction between ocean air-affected and ocean air-sheltered stations can be used to identify the influence of the oceans on land surface. We can then use this knowledge as a tool to better study climate variability on the land surface without the moderating effects of the ocean.

We find a lack of warming in the ocean air sheltered temperature data – with less impact of ocean temperature trends – after 1950. The lack of warming in the ocean air sheltered temperature trends after 1950 should be considered when evaluating the climatic effects of changes in the Earth's atmospheric trace amounts of greenhouse gasses as well as variations in solar conditions.

General information
State: Published
Organisations: National Space Institute, Innovation and Research-based consultancy
Contributors: Lansner, F., Pedersen, J. O. P.
Number of pages: 20
Pages: 613-632
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Energy & Environment
Volume: 29
Issue number: 4
ISSN (Print): 0958-305X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.54 SJR 0.258 SNIP 0.391
Web of Science (2017): Impact factor 0.568
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.37 SJR 0.262 SNIP 0.218
Web of Science (2016): Impact factor 0.302
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.56 SJR 0.337 SNIP 0.439
Web of Science (2015): Impact factor 0.513
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.42 SJR 0.285 SNIP 0.36
Web of Science (2014): Impact factor 0.655
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.37 SJR 0.222 SNIP 0.41
Web of Science (2013): Impact factor 0.41
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.29 SJR 0.215 SNIP 0.378
Web of Science (2012): Impact factor 0.319
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.22 SJR 0.192 SNIP 0.355
Web of Science (2011): Impact factor 0.147
The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

We study the properties of 115 coronal holes in the time-range from 2010/08 to 2017/03, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo-effectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator, and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes $>\sim 60^\circ$, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similar, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere, i.e., high-speed streams arising from coronal holes near the solar equator propagate in direction towards and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Zagreb, University of Graz, Kiel University
Pages: 1738-1753
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Geophysical Research: Space Physics
Volume: 123
Issue number: 3
ISSN (Print): 0148-0227
Ratings:
BFI (2018): BFI-level 2
e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a γ-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.
The effect of nitrogen incorporation in boron carbide and iridium thin films
Thin film coated mirrors enable pioneering observations of X-rays and soft gamma rays. The performance of the reflective mirrors is key in expanding knowledge of the hot and energetic Universe. A critical part of maturing the optics technology is firstly, to establish a smooth surface and interface of the selected materials and, secondly, to obtain an in-depth understanding of the contamination in the thin films and ultimately, to ensure long-term stability. The aim of this study is to investigate the chemical composition, roughness and stability of boron carbide and iridium thin films and the effects of nitrogen incorporation.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics
Contributors: Massahi, S., Christensen, F. E., Ferreira, D. D., Dalampiras, P., Svendsen, S., Jafari, A.
Number of pages: 11
Publication date: 2018

The Influence of Stellar Spin on Ignition of Thermonuclear Runaways
Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Amsterdam, SRON Netherlands Institute for Space Research, University of Maryland, European Space Astronomy Centre, Leibniz Institute for Astrophysics Potsdam, CNRS
Number of pages: 6
Publication date: 2018
Peer-reviewed: Yes
The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists

K2-138 is a moderately bright (V = 12.2, K = 10.3) main-sequence K star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3 R⊕) transiting planets in a compact architecture. The periods of the five planets are 2.35, 3.56, 5.40, 8.26, and 12.76 days, forming an unbroken chain of near 3:2 resonances. Although we do not detect the predicted 2-5 minute transit timing variations (TTVs) with the K2 timing precision, they may be observable by higher-cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial velocity measurements, and therefore K2-138 could represent a new benchmark system for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform.
The McXtrace AstroX toolbox: a general ray tracing software package for end to end simulation of X-ray optics for astronomical instrumentation

McXtrace is a general, highly modular, X-ray tracing open source software package for simulating X-ray optics. While initially intended for simulating synchrotron beamlines, it has recently found use in astrophysics. Here it is being used to evaluate the projected performance of X-ray telescope designs. We present the software add-on toolbox "AstroX" to McXtrace containing all of the common optical elements found in satellite based X-ray telescopes. In addition, the toolbox contains detector and source models relevant for astronomical applications. As an added benefit, users may exploit the heritage of McXtrace and use its beamline elements, to simulate characterization measurements of optical elements. McXtrace AstroX allows for simulation of X-rays telescopes based on different optical concepts such as nested mirror shells and Silicon Pore Optics technology. In this study we present examples of McXtrace AstroX use for ATHENA-, and NuSTAR-like telescope concepts.

The Properties of GRB 120923A at a Spectroscopic Redshift of \(z = 7.8 \)

Gamma-ray bursts (GRBs) are powerful probes of early stars and galaxies, during and potentially even before the era of reionization. Although the number of GRBs identified at \(z \geq 6 \) remains small, they provide a unique window on typical star-forming galaxies at that time, and thus are complementary to deep field observations. We report the identification of the optical drop-out afterglow of Swift GRB 120923A in near-infrared Gemini-North imaging, and derive a redshift of \(z = 7.84^{+0.02}_{-0.12} \) from Very Large Telescope/X-shooter spectroscopy. At this redshift the peak 15–150 keV luminosity of the burst was \(3.2 \times 10^{52} \) erg s\(^{-1}\), and in this sense it was a rather typical long-duration GRB in terms of rest frame luminosity.
This burst was close to the Swift/Burst Alert Telescope detection threshold, and the X-ray and near-infrared afterglow were also faint. We present ground- and space-based follow-up observations spanning from X-ray to radio, and find that a standard external shock model with a constant-density circumburst environment of density $n \approx 4 \times 10^{-2}$ cm$^{-3}$ gives a good fit to the data. The near-infrared light curve exhibits a sharp break at $t \approx 3.4$ days in the observer frame which, if interpreted as being due to a jet, corresponds to an opening angle of $\theta_{\text{jet}} \approx 5^\circ$. The beaming-corrected γ-ray energy is then $E_\gamma \approx 2 \times 10^{50}$ erg, while the beaming-corrected kinetic energy is lower, erg, suggesting that GRB 120923A was a comparatively low kinetic energy event. We discuss the implications of this event for our understanding of the high-redshift population of GRBs and their identification.

General information
State: Published
Organisations: National Space Institute, University of California at Berkeley, Liverpool John Moores University, University of Leicester, University of Warwick, University of Copenhagen, Arizona State University, NASA Goddard Space Flight Center, Max-Planck-Institut fur extraterrestrische Physik, University of the Virgin Islands, Harvard-Smithsonian Center for Astrophysics, University of Bristol, Instituto de Astrofísica de Andalucía, George Washington University, National Institute for Astrophysics, University of Arizona, Space Telescope Science Institute, University Paris Diderot - Paris 7, CNRS, University of Iceland, Thüringer Landessternwarte Tautenburg, University of Amsterdam, Aryabhatta Research Institute of Observational Sciences, Weizmann Institute of Science, Chinese Academy of Sciences
Number of pages: 16
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astrophysical Journal
Volume: 865
Issue number: 2
Article number: 107
ISSN (Print): 0004-637X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.41
Web of Science (2017): Impact factor 8.561
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.26
Web of Science (2016): Impact factor 8.955
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.8
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.57
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.85
Web of Science (2013): Impact factor 14.137
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.51
Web of Science (2012): Impact factor 16.238
Research output: Research - peer-review › Journal article – Annual report year: 2018

The THESEUS space mission concept: science case, design and expected performances

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5–1 arcmin localization, an energy band extending from several MeV down to 0.3keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).

General information

State: Published

Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Copenhagen

The Total Electron Content From InSAR and GNSS: A Midlatitude Study

The total electron content (TEC) measured from the interferometric synthetic aperture radar (InSAR) and from a dense network of global navigation satellite system (GNSS) receivers are used to assess the capability of InSAR to retrieve ionospheric information, when the tropospheric contribution to the interferometric phase is reasonably negligible. With this aim, we select three night-time case studies over Italy and investigate the correlation between TEC from advanced land observing satellite phased array type L-band synthetic aperture radar (ALOS-PALSAR) and from the Rete Integrata Nazionale GPS (RING) network, the latter considered as the reference true ionospheric TEC. To retrieve the TEC variability from ALOS-PALSAR, we first investigate the correlation between the integral of the azimuth shifts and the interferometric phase in the absence of ground motions (e.g., earthquakes) and/or heavy rain events. If correlation exists (as in two out of three case studies under investigation), we can assume the tropospheric contribution to the interferometric phase as negligible and the TEC variability from L-band InSAR can be retrieved. For these two case studies, the comparison between the TEC from the InSAR images and from the RING network is quite encouraging as the correlation coefficient is $R \approx 0.67$ in the first case and $R \approx 0.83$ in the second case. This result highlights the potential to combine InSAR and GNSS experimental measurements to investigate small-scale spatial variability of TEC, in particular over regions scarcely covered by ground-based GNSS receivers.

General information
State: Published
Organisations: National Space Institute, Microwaves and Remote Sensing, University of Rome La Sapienza, Istituto Nazionale di Geofisica e Vulcanologia, Sapienza - Università di Roma
Contributors: Musico, E., Cesaroni, C., Spogli, L., Merryman Boncori, J. P., De Franceschi, G., Seu, R.
Pages: 1725-1733
Publication date: 2018
Peer-reviewed: Yes

Publication information
Volume: 11
Issue number: 5
ISSN (Print): 1939-1404
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.61 SJR 1.547 SNIP 1.598
Web of Science (2017): Impact factor 2.777
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.44 SJR 1.595 SNIP 1.842
The wide field monitor onboard the eXTP mission

The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Wide Field Monitor (WFM). The WFM instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/WFM envisages a wide field X-ray monitor system in the 2-50 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors. The WFM will consist of 3 pairs of coded mask cameras with a total combined Field of View (FoV) of 90×180 degrees at zero response and a source localization accuracy of ~1 arcmin. In this paper we provide an overview of the WFM instrument design, including new elements with respect to the earlier LOFT configuration, and anticipated performance.

General information

State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, IEEC - Institute of Space Studies of Catalonia, National Institute for Astrophysics, Space Research Center of the Polish Academy of Sciences, University of Tübingen, Université Paris-Saclay, University of Geneva, SRON Netherlands Institute for Space Research, CAS - Institute of High Energy Physics, University of Udine, Technical University of Denmark, National Institute for Astrophysics, INFN, IRST Fondazione Bruno Kessler, CSIC
Three-phase Evolution of a Coronal Hole. I. 360° Remote Sensing and In Situ Observations

We investigate the evolution of a well-observed, long-lived, low-latitude coronal hole (CH) over 10 solar rotations in the year 2012. By combining extreme ultraviolet (EUV) imagery from the Solar TErrestrial RElations Observatories (STEREO-A/B) and the Solar Dynamics Observatory (SDO), we are able to track and study the entire evolution of the CH having a continuous 360° coverage of the Sun. The remote sensing data are investigated together with in situ solar wind plasma and magnetic field measurements from STEREO-A/B, the Advanced Composition Explorer (ACE), and WIND. From this, we obtain how different evolutionary states of the CH as observed in the solar atmosphere (changes in EUV intensity and area) affect the properties of the associated high-speed stream measured at 1 au. Most distinctly pronounced for the CH area, three development phases are derived: (a) growing, (b) maximum, and (c) decaying phase. During these phases the CH area (a) increases over a duration of around three months from about $1 \cdot 10^{10}$ km2 to $6 \cdot 10^{10}$ km2, (b) keeps a rather constant area for about one month of $>9 \cdot 10^{10}$ km2, and (c) finally decreases in the following three months below $1 \cdot 10^{10}$ km2 until the CH cannot be identified anymore. The three phases manifest themselves also in the EUV intensity and in situ measured solar wind proton bulk velocity. Interestingly, the three phases are related to a different range in solar wind speed variations, and we find for the growing phase a range of 460–600 km s$^{-1}$, for the maximum phase 600–720 km s$^{-1}$, and for the decaying phase a more irregular behavior connected to slow and fast solar wind speeds of 350–550 km s$^{-1}$.
Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.
Topological information extraction from buildings in CityGML

The demand for 3D city modelling for various applications continues to grow with the capabilities of 3D city modelling. One of the uses of 3D city models is to facilitate 3D analysis which usually requires information regarding the topology of the objects within the city model. CityGML as the international standard for 3D city modelling maintains topological information with the use of a ‘topology-incidence’ where objects are referenced to each other with the condition that the objects share a common surface. This paper explains the extraction of topological information based on the data structure of the geometries in CityGML files and discusses the usability of the existing topology mechanism of CityGML. The topological information was extracted from the CityGML files using the hierarchical geometric structure of CityGML as a stand-in model to describe the topological properties of the object. The extracted information consisted of building surfaces which have been decomposed to 0D points with their respective identification and coordinates. Based on the extracted topological information and related literature, it was found that the topological information extracted from the geometric structure of CityGML was limited to the locality of the object in question and could not extend beyond the dimension of the primitive.
Toward Consistent Modeling of Atmospheric Chemistry and Dynamics in Exoplanets: Validation and Generalization of the Chemical Relaxation Method

Motivated by the work of Cooper & Showman, we revisit the chemical relaxation method, which seeks to enhance the computational efficiency of chemical kinetics calculations by replacing the chemical network with a handful of independent source/sink terms. Chemical relaxation solves the evolution of the system and can treat disequilibrium chemistry, as the source/sink terms are driven toward chemical equilibrium on a prescribed chemical timescale, but it has surprisingly never been validated. First, we generalize the treatment by forgoing the use of a single chemical timescale, instead developing a pathway analysis tool that allows us to identify the rate-limiting reaction as a function of temperature and pressure. For the interconversion between methane and carbon monoxide, and between ammonia and molecular nitrogen, we identify the key rate-limiting reactions for conditions relevant to currently characterizable exo-atmospheres (500-3000 K, 0.1 mbar to 1 kbar). Second, we extend chemical relaxation to include carbon dioxide and water. Third, we examine the role of metallicity and the carbon-to-oxygen ratio in chemical relaxation. Fourth, we apply our pathway analysis tool to diagnose the differences between our chemical network and that of Moses and Venot. Finally, we validate the chemical relaxation method against full chemical kinetics calculations in one dimension. For WASP-18b-, HD 189733b-, and GJ 1214-b-like atmospheres, we show that chemical relaxation is mostly accurate to within an order of magnitude, a factor of 2, and similar to 10%, respectively. The level of accuracy attained allows for the chemical relaxation method to be included in three-dimensional general circulation models.
Transiting planet candidate from K2 with the longest period

Context. We present the transit and follow-up of a single transit event from Campaign 14 of K2, EPIC248847494b, which has a duration of 54 h and a 0.18% depth.

Aims. Using photometric tools and conducting radial velocity follow-up, we vet and characterise this very strong candidate.

Methods. Owing to the long, unknown period, standard follow-up methods needed to be adapted. The transit was fitted using Namaste, and the radial velocity slope was measured and compared to a grid of planet-like orbits with varying masses and periods. These used stellar parameters measured from spectra and the distance as measured by Gaia.

Results. Orbiting around a sub-giant star with a radius of $2.70 \pm 0.12 \text{ R}_\odot$, the planet has a radius of $1.11^{-0.07}_{+0.07} \text{ R}_{\text{Jup}}$ and a period of 3650^{-1130}_{+1280} days. The radial velocity measurements constrain the mass to be lower than $13 \text{ M}_{\text{Jup}}$, which implies a planet-like object.

Conclusions. We have found a planet at 4.5 AU from a single-transit event. After a full radial velocity follow-up campaign, if confirmed, it will be the longest-period transiting planet discovered.

General information

State: Published
Organisations: National Space Institute, University of Geneva, Aix Marseille Universite, University of Warwick, Harvard-Smithsonian Center for Astrophysics, University of St Andrews
Contributors: Giles, H. A. C., Osborn, H. P., Blanco-Cuaresma, S., Lovis, C., Bayliss, D., Eggenberger, P., Cameron, A. C., Kristiansen, M. H., Turner, O., Bouchy, F., Udry, S.
Number of pages: 5
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Astronomy and Astrophysics
Volume: 615
Article number: L13
ISSN (Print): 0004-6361
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.8 SJR 2.265 SNIP 1.099
Web of Science (2017): Impact factor 5.565
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68 SJR 2.234 SNIP 1.199
Web of Science (2016): Impact factor 5.014
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.5 SJR 2.545 SNIP 1.224
Web of Science (2015): Impact factor 5.185
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.82 SJR 2.883 SNIP 1.247
Web of Science (2014): Impact factor 4.378
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.01 SJR 2.747 SNIP 1.159
Web of Science (2013): Impact factor 4.479
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.14 SJR 2.903 SNIP 1.36
Web of Science (2012): Impact factor 5.084
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
UBAT of UFFO/Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/Lomonosov), the UBAT’s roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm² scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device’s imaging algorithms. The UFFO/Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT’s design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.
UFFO/Lomonosov: The Payload for the Observation of Early Photons from Gamma Ray Bursts

The payload of the UFFO (Ultra-Fast Flash Observatory)-pathfinder now onboard the Lomonosov spacecraft (hereafter UFFO/Lomonosov) is a dedicated instrument for the observation of GRBs. Its primary aim is to capture the rise phase of the optical light curve, one of the least known aspects of GRBs. Fast response measurements of the optical emission of GRB will be made by a Slewing Mirror Telescope (SMT), a key instrument of the payload, which will open a new frontier in transient studies by probing the early optical rise of GRBs with a response time in seconds for the first time. The SMT employs a rapidly slewing mirror to redirect the optical axis of the telescope to a GRB position prior determined by the UFFO Burst Alert Telescope (UBAT), the other onboard instrument, for the observation and imaging of X-rays.

UFFO/Lomonosov was launched successfully from Vostochny, Russia on April 28, 2016, and will begin GRB observations after completion of functional checks of the Lomonosov spacecraft. The concept of early GRB photon measurements with UFFO was reported in 2012. In this article, we will report in detail the first mission, UFFO/Lomonosov, for the rapid response to GRB observations.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics
Number of pages: 21
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Space Science Reviews
Volume: 214
Issue number: 1
Article number: 14
ISSN (Print): 0038-6308
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.81 SJR 3.262 SNIP 2.518
Web of Science (2017): Impact factor 9.327
Original language: English
Keywords: Gamma ray burst, UFFO, Lomonosov, UBAT, SMT

Electronic versions:
filestore (1)

DOIs:
10.1007/s11214-017-0444-7

Bibliographical note
© The Author(s) 2017 Open Access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Source: FindIt
Source-ID: 2393967977
Ultra-High Performance C & L-Band Radiometer System for Future Spaceborne Ocean Missions
A next generation spaceborne radiometer system for hi-quality ocean measurements is discussed. Instead of a classical horn, a focal plane array is used as antenna feed. The antenna beam is created by adding the outputs from many small antenna elements, thus providing an antenna beam of unsurpassed quality. This solves the classical polarization purity and land / sea contamination issues. The concept requires many microwave receivers and fast analog-to-digital converters as well as fast digital signal processing on-board the satellite. This is discussed, and resource budgets, especially concerning power, are provided.

General information
State: Published
Organisations: National Space Institute, Microwaves and Remote Sensing, TICRA, Chalmers University of Technology
Pages: 42-47
Publication date: 2018

Uncertainty Reduction of Arctic Sea Ice Freeboard from CryoSat-2 Interferometric Mode
Abstract A study by Armitage and Davidson (2014) has shown that the extra information from the CryoSat-2 (CS2) SARIn mode increases the number of valid sea surface height estimates which are usually discarded in the SAR mode due to snagging of the radar signal. As the number of valid detected leads increases, the uncertainty of the freeboard heights decreases. In this study, the freeboard heights estimated by processing CS2 SARIn level 1b waveforms are validated using the information from airborne laser and radar altimetry as well as snow radar measurements acquired during the CryoVEx 2012 and Operation IceBridge 2012 campaigns, respectively. The possible reduction in the random freeboard uncertainty is investigated comparing two scenarios, i.e. a SAR-like and a SARIn acquisition. A very good agreement is found between average airborne and satellite radar freeboards although, at the CS2 footprint scale, they do not show along-track spatial correlation. It is observed that using the extra phase information, CS2 is able to detect leads up to 2300 m off-nadir. A reduction in the the total random freeboard uncertainty of ~ 40% is observed by taking advantage of the CS2 interferometric capabilities, which enable to include ~ 35% of the waveforms discarded in the SAR-like scenario.

General information
State: Published
Organisations: National Space Institute, Geodynamics, ESRIN - ESA Centre for Earth Observation
Contributors: Di Bella, A., Skourup, H., Bouffard, J., Parrinello, T.
Pages: 1251-1264
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Advances in Space Research
Volume: 62
Issue number: 6
ISSN (Print): 0273-1177
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.63 SJR 0.569 SNIP 1.067
Web of Science (2017): Impact factor 1.529
Web of Science (2017): Indexed yes
Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ~280
mCrab. Pulsations at 9.854 ± 0.007 s were detected in the X-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential cutoff or high-energy cutoff power-law models modified with a hot blackbody at ~3 keV. An iron emission line was also detected at 6.4 keV in the source spectrum. We did not find any signature of cyclotron absorption line in our study. Results obtained from phase-resolved and time-resolved spectroscopy are discussed in the paper.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Physical Research Laboratory
Contributors: Jaisawal, G. K., Naik, S., Chenevez, J.
Pages: 4432-4437
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Monthly Notices of the Royal Astronomical Society
Volume: 474
Issue number: 4
ISSN (Print): 0035-8711
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.54 SJR 2.346 SNIP 0.904
Web of Science (2017): Impact factor 5.194
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.09 SJR 2.388 SNIP 1.134
Web of Science (2016): Impact factor 4.961
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4 SJR 2.701 SNIP 1.165
Web of Science (2015): Impact factor 4.952
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.79 SJR 3.23 SNIP 1.322
Web of Science (2014): Impact factor 5.107
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.1 SJR 3.155 SNIP 1.23
Web of Science (2013): Impact factor 5.226
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.89 SJR 3.283 SNIP 1.392
Web of Science (2012): Impact factor 5.521
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.63 SJR 2.964 SNIP 1.35
Web of Science (2011): Impact factor 4.9
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.18 SNIP 1.339
Web of Science (2010): Impact factor 4.888
Web of Science (2010): Indexed yes
Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatan Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-rotor platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5–7 cm and accuracy of the water depth measurements is estimated to be ~3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

General information
State: Published
Organisations: Department of Environmental Engineering, Air, Land & Water Resources, National Space Institute, Geodesy, Amigos de Sian Ka’an
Pages: 2213–2228
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Hydrogeology Journal
Volume: 26
Issue number: 7
ISSN (Print): 1431-2174

Ratings:

BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.03 SJR 0.886 SNIP 1.153
Web of Science (2017): Impact factor 2.071
Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.13 SJR 1.134 SNIP 1.144
Web of Science (2016): Impact factor 2.109

BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.96 SJR 0.977 SNIP 1.281
Web of Science (2015): Impact factor 2.028

BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.07 SJR 1.167 SNIP 1.601
Web of Science (2014): Impact factor 1.966

BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.95 SJR 1.159 SNIP 1.551
Web of Science (2013): Impact factor 1.712

ISI indexed (2013): ISI indexed yes

BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.63 SJR 1.115 SNIP 1.418
Web of Science (2012): Impact factor 1.675
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes

BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.34 SJR 0.816 SNIP 1.073
Web of Science (2011): Impact factor 1.387
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes

BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.954 SNIP 1.304
Web of Science (2010): Impact factor 1.326

BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.079 SNIP 1.386
Web of Science (2009): Indexed yes

BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.186 SNIP 1.567
Scopus rating (2007): SJR 0.891 SNIP 1.423
Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 0.823 SNIP 1.639
Scopus rating (2005): SJR 0.86 SNIP 2.157
Scopus rating (2004): SJR 1.024 SNIP 1.475
Scopus rating (2003): SJR 1.064 SNIP 1.521
Scopus rating (2002): SJR 0.642 SNIP 1.233
Scopus rating (2001): SJR 0.5 SNIP 0.94

Scopus rating (2000): SJR 0.25 SNIP 1.155
Scopus rating (1999): SJR 0.29 SNIP 0.695

Original language: English
Keywords: Mexico, Karst, Groundwater/surface-water relations, Cenote

DOIs:
10.1007/s10040-018-1755-9

Source: FindIt
Validation of CryoSat-2 SARIn Data over Austfonna Ice Cap Using Airborne Laser Scanner Measurements

The study presented here is focused on the assessment of surface elevations derived from CryoSat-2 SARIn level 1b data over the Austfonna ice cap, Svalbard, in 2016. The processing chain that must be applied to the CryoSat-2 waveforms to derive heights is non-trivial, and consists of multiple steps, all requiring subjective choices of methods such as the choice of retracker, geo-relocation, and outlier rejection. Here, we compare six CryoSat-2 level-2 type data sets of surface elevations derived using different SARIn processing chains. These data sets are validated against surface elevation data collected from an airborne laser scanner, during a dedicated CryoSat validation experiment field campaign carried out in April 2016. The flight pattern of the airborne campaign was designed so that elevations were measured in a grid pattern rather than along single lines, as has previously been the standard procedure. The flight grid pattern was chosen to optimize the comparison with the CryoSat-2 SARIn elevation data, the location of which can deviate from nadir by several kilometers due to topography within the satellite footprint. The processing chains behind the six data sets include different outlier/error rejection approaches, and do not produce the same number of data points in our region of interest. To make a consistent analysis, we provide statistics from the validation of both the full data sets from each processing chain, and on only those data that all the six data sets provide a geo-located elevation estimate for. We find that the CryoSat-2 data sets that agree best with the validation data are those derived from dedicated land ice processing schemes. This study may serve as a benchmark for future CryoSat-2 retracker developments, and the evaluation software and data set are made publicly available.

General information
State: Published
Organisations: National Space Institute, Geodynamics, Geodesy, ASIAQ Greenland Survey, University of Ottawa, Alfred Wegener Institute, NASA Jet Propulsion Laboratory, European Space Agency - ESA
Number of pages: 12
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing
Volume: 10
Issue number: 9
Article number: 1354
ISSN (Print): 2072-4292
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.03 SJR 1.386 SNIP 1.559
Web of Science (2017): Impact factor 3.406
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.56 SJR 1.309 SNIP 1.718
Web of Science (2016): Impact factor 3.244
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 3.76 SJR 1.349 SNIP 1.682
Web of Science (2015): Impact factor 3.036
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.23 SJR 1.275 SNIP 1.856
Web of Science (2014): Impact factor 3.18
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.01 SJR 1.127 SNIP 1.973
Web of Science (2013): Impact factor 2.623
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.36 SJR 0.99 SNIP 1.801
Web of Science (2012): Impact factor 2.101
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 1.3 SJR 0.533 SNIP 1.327
ISI indexed (2011): ISI indexed no
What drives 20th century polar motion?

Astrometric and geodetic measurements show that the mean position of Earth's spin axis drifted through the solid crust toward Labrador, Canada at an average speed of 10.5 +/- 0.9 cm/yr during the 20th century. Understanding the origins of this secular polar motion (SPM) has significance for modeling the global climate, as it provides a link to ice mass balance and sea-level rise. A perplexing issue, however, is that while glacial isostatic adjustment (GIA) models satisfactorily explain the direction of SPM, the associated prediction of the amplitude is insufficient. Our Bayesian GIA analysis, with constraints from relative sea-level and vertical land motion data, reveals that this process only accounts for 33 +/- 18% of the observed SPM amplitude. This shortfall motivates a more broadly scoped reassessment of SPM drivers. To address this, we assemble a complete reconstruction of Earth's surface mass transport derived from recent advancements in modeling the global 20th century cryospheric, hydrologic, oceanic, and seismogenic mass exchange. The summed signals, nonetheless, cannot fully reconcile the observed SPM, even when considering the error statistics of each driver. We investigate an additional excitation source: changes in Earth's inertia tensor caused by mantle convection. Sophisticated models have recently been advanced in tectonic plate reconstructions, in conjunction with geoid and seismic tomographic models. Here we use these models to compute new estimates of SPM. While the convection-driven SPM has considerable uncertainty, the average direction of 283 recent models aligns with the residual SPM (within 2.7 +/- 14.8 degrees), significantly reducing the gap between observation and prediction. We assert that one key mechanism for driving 20th century SPM is long-term mass movement due to mantle convection. (C) 2018 Elsevier B.V. All rights reserved.
Zodiacal Exoplanets in Time (ZEIT). VII. A Temperate Candidate Super-Earth in the Hyades Cluster

Transiting exoplanets in young open clusters present opportunities to study how exoplanets evolve over their lifetimes. Recently, significant progress detecting transiting planets in young open clusters has been made with the K2 mission, but so far all of these transiting cluster planets orbit close to their host stars, so planet evolution can only be studied in a high-irradiation regime. Here, we report the discovery of a long-period planet candidate, called HD 283869 b, orbiting a member of the Hyades cluster. Using data from the K2 mission, we detected a single transit of a super-Earth-sized (1.96 ± 0.12 R⊕) planet candidate orbiting the K-dwarf HD 283869 with a period longer than 72 days. As we only detected a single-transit event, we cannot validate HD 283869 b with high confidence, but our analysis of the K2 images, archival data, and follow-up observations suggests that the source of the event is indeed a transiting planet. We estimated the candidate’s orbital parameters and find that if real, it has a period P ≈ 100 days and receives approximately Earth-like incident flux, giving the candidate a 71% chance of falling within the circumstellar habitable zone. If confirmed, HD 283869 b would have the longest orbital period, lowest incident flux, and brightest host star of any known transiting planet in an open cluster, making it uniquely important to future studies of how stellar irradiation affects planetary evolution.