Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks - DTU Orbit (19/01/2019)

Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash brick discs obtained satisfactory densities (1669-2007 kg/m³) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m³) and high open porosities (42.1-51.%). However, leaching tests on crushed brick discs revealed that heavy metals generally became more available after firing for all the investigated materials and that further optimisation is therefore necessary prior to incorporation in bricks.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Geotechnics and Geology, ARTEK, Section for Arctic Engineering and Sustainable Solutions, Danish Technological Institute
Number of pages: 13
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Environmental Science and Pollution Research
ISSN (Print): 0944-1344
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.84 SJR 0.858 SNIP 0.942
Web of Science (2017): Impact factor 2.8
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.66 SJR 0.891 SNIP 1.109
Web of Science (2016): Impact factor 2.741
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.5 SJR 0.906 SNIP 1.049
Web of Science (2015): Impact factor 2.76
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.57 SJR 0.99 SNIP 1.199
Web of Science (2014): Impact factor 2.828
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.34 SJR 0.942 SNIP 1.179
Web of Science (2013): Impact factor 2.757
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.29 SJR 1.127 SNIP 1.246
Web of Science (2012): Impact factor 2.618
ISI indexed (2012): ISI indexed yes