Scheduling and Mapping in an Incremental Design Methodology for Distributed Real-Time Embedded Systems

Publication: Research - peer-reviewJournal article – Annual report year: 2004

View graph of relations

In this paper we present an approach to mapping and scheduling of distributed embedded systems for hard real-time applications, aiming at a minimization of the system modification cost. We consider an incremental design process that starts from an already existing system running a set of applications. We are interested to implement new functionality such that the timing requirements are fulfilled, and the following two requirements are also satisfied: the already running applications are disturbed as little as possible, and there is a good chance that, later, new functionality can easily be added to the resulted system. Thus, we propose a heuristic which finds the set of already running applications which have to be remapped and rescheduled at the same time with mapping and scheduling the new application, such that the disturbance on the running system (expressed as the total cost implied by the modifications) is minimized. Once this set of applications has been determined, we outline a mapping and scheduling algorithm aimed at fulfilling the requirements stated above. The approaches have been evaluated based on extensive experiments using a large number of generated benchmarks as well as a real-life example.
Original languageEnglish
JournalIEEE Transactions on VLSI Systems
Publication date2004
Volume12
Issue8
Pages793-811
ISSN1063-8210
DOIs
StatePublished

Bibliographical note

Copyright note for papers published by the IEEE Computer Society: Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

CitationsWeb of Science® Times Cited: 5
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 2703437