Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

Publication: Research - peer-reviewJournal article – Annual report year: 2007

View graph of relations

We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires by computing the mean free path, sample-averaged conductance hGi, and sample-to-sample variations stdG as a function of energy, doping density, wire length, and the radial dopant profile. Our main findings are (i) the main trends can be predicted quantitatively based on the scattering properties of single dopants, (ii) the sample-to-sample fluctuations depend on energy but not on doping density, thereby displaying a degree of universality, and (iii) in the diffusive regime the analytical predictions of the Dorokhov-Mello-Pereyra- Kumar theory are in good agreement with our ab initio calculations.
Original languageEnglish
JournalPhysical Review Letters
Publication date2007
Volume99
Issue7
Pages076803
ISSN0031-9007
DOIs
StatePublished

Bibliographical note

Copyright 2007 American Physical Society

CitationsWeb of Science® Times Cited: 68

Keywords

  • CONDUCTANCE FLUCTUATIONS
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4783476